Abstract:
A method of thermally conditioning a physical object, includes guiding a two-phase cooling medium through a cooling duct of the physical object, wherein the guiding includes: guiding the two-phase cooling medium in a liquid phase via a pre-heating duct of the physical object from a supply side of the physical object at least partly towards a discharging side of the physical object, the two-phase cooling medium being pre-heated in the pre-heating duct; guiding the two-phase cooling medium from the pre-heating duct to a phase transitioning duct of the physical object, the two-phase cooling medium at least partly transitioning from the liquid phase towards a gas phase in the phase transitioning duct; guiding the two-phase cooling medium from the phase transitioning duct to a discharging duct of the physical object; and discharging at the discharging side the two-phase cooling medium from the discharging duct.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.
Abstract:
A support for an object, e.g., a semiconductor substrate, includes a main body having a surface configured and arranged to have a plurality of projections. Each of the projections has an associated electrostatic actuator for displacing a free end of the associated projection relative to the main body at least in a direction in a plane parallel to a main surface of the object.
Abstract:
A lithographic apparatus has a support that is provided with burls for holding an object. The support has been fabricated with a lithographic manufacturing method, e.g., a MEMS-technology, so as to create burls whose orientations or positions are individually electrically controllable.
Abstract:
A lithographic apparatus comprises a system. The system comprises a first part, a second part and an energy absorbing element. The second part is configured to move relatively to the first part. The system has a gap located between the first part and the second part during an operation mode of the system. The energy absorbing element is for absorbing energy between the first part and the second part when the first part and the second part crash onto each other in a failure mode of the system. The energy absorbing element is outside the gap.
Abstract:
An exposure apparatus including a projection system configured to project a plurality of radiation beams onto a target; a movable frame that is at least rotatable around an axis; and an actuator system configured to displace the movable frame to an axis away from an axis corresponding to the geometric center of the movable frame and to cause the frame to rotate around an axis through the center of mass of the frame.
Abstract:
A movable stage system is configured to support an object subjected to a lithography process. A short stroke part (SS) is configured to support the object (W) and a long stroke part (LS) is configured to support the short stroke part. The short stroke part is movable over a relative small range of movement with respect to the long stroke part. The long stroke part is movable over a relative large range of movement with respect to a base support arranged to support the long stroke part. A shielding element (SE) is arranged between the short and long stroke parts. A position control system (PCS) maintains a substantially constant distance between the shielding element and the short stroke part.
Abstract:
A movable stage system is configured to support an object subjected to a lithography process. A short stroke part (SS) is configured to support the object (W) and a long stroke part (LS) is configured to support the short stroke part. The short stroke part is movable over a relative small range of movement with respect to the long stroke part. The long stroke part is movable over a relative large range of movement with respect to a base support arranged to support the long stroke part. A shielding element (SE) is arranged between the short and long stroke parts. A position control system (PCS) maintains a substantially constant distance between the shielding element and the short stroke part.
Abstract:
A lithographic apparatus component, such as a metrology system or an optical element (e.g., a mirror) is provided with a temperature control system for controlling deformation of the component. The control system includes channels provided close to a surface of the component through which a two phase cooling medium is supplied. The metrology system measures a position of at least a moveable item with respect to a reference position and includes a metrology frame connected to the reference position. An encoder is connected to the moveable item and constructed and arranged to measure a relative position of the encoder with respect to a reference grid. The reference grid may be provided directly on a surface of the metrology frame. A lithographic projection apparatus may have the metrology system for measuring a position of the substrate table with respect to the projection system.
Abstract:
A displacement measurement system comprising at least one retro reflector and a diffraction grating. Said displacement measurement system is constructed and arranged to measure a displacement by providing a first beam of radiation to the measurement system, wherein the diffraction grating is arranged to diffract the first beam of radiation a first time to form diffracted beams. The at least one retro reflector is arranged to subsequently redirect the diffracted beams to diffract a second time on the diffraction grating. The at least one retro reflector is arranged to redirect the diffraction beams to diffract at least a third time on the diffraction grating before the diffracted beams are being recombined to form a second beam. And the displacement system is provided with a sensor configured to receive the second beam and determine the displacement from an intensity of the second beam.