Abstract:
A device and method selects an antenna configuration. The method performed at a user equipment includes determining at least one communication functionality that is being used, each communication functionality configured to utilize at least one antenna in a multi-antenna arrangement of the user equipment. The method includes receiving a first indication of whether a cellular communication functionality is being used, the cellular communication functionality configured to utilize at least one antenna in the multi-antenna arrangement. The method includes receiving a second indication of whether a coexistence condition is present. The method includes determining an antenna configuration for the multi-antenna arrangement to be used by the determined communication functionality based upon the determined communication functionality, the first indication, and the second indication. The method includes configuring the multi-antenna arrangement for the determined communication functionality based upon the antenna configuration.
Abstract:
A method for receiving feedback on a quality of multicast transmissions in a Wireless Local Access Network (WLAN) including a source electronic device (e.g., an access point) and a plurality of electronic devices is disclosed, according to some embodiments. The method can include (i) transmitting a plurality of multicast packets addressed to a subset of the plurality of electronic devices by the source electronic device; (ii) concurrently polling the subset of the plurality of electronic devices by the source electronic device; and (iii) receiving a plurality of block acknowledgements (BAs) from at least the subset of the plurality of electronic devices by the source electronic device. Each BA may include information on a quality of reception of two or more multicast packets received at an electronic device.
Abstract:
A device and method transmits a data block over a wireless coexistence interface (WCI) pathway. The method includes generating a data block for transmission between a cellular chip and an Industrial, Scientific, and Medical (ISM) chip. The method includes converting the data block into messages, the messages having a format corresponding to the WCI pathway, the WCI pathway directly communicatively connecting the cellular chip and the ISM chip, the format including an indication of a message type. The method includes transmitting the messages over the WCI pathway. The method includes generating the data block based upon a concatenation of the messages.
Abstract:
Various systems and methods disclosed herein describe improvements for beam management that leverage virtualization across a vertical polarization (V-Pol) and horizontal polarization (H-Pol). One or more of a user equipment (UE) and a base station may include an antenna array comprising both V-Pol and H-Pol antenna elements. A UE may message a base station to configure uplink (UL) multiple input multiple output (MIMO) operations across one or more of the V-Pol and the H-Pol. The message may include a number of MIMO layers to be concurrently used for communicating data to the base station, where each MIMO layer is transmitted using one of a V-Pol and an H-Pol; a number of sounding reference signals (SRS) to be transmitted by the UE, each SRS to be transmitted using one of the V-Pol and the H-Pol; and a supported maximum number of antenna ports per each SRS.
Abstract:
A method for transitioning a video call is provided. The method can include a wireless communication device participating in a video call with a remote communication device via a first video call session established over a connection between the wireless communication device and a first cellular network. The video call can include a packet switched video stream carried over a first bearer and an audio stream carried over a second bearer. The method can further include the wireless communication device determining a degradation in a connection quality for the first cellular network; transitioning to a legacy cellular network having a circuit switched domain in response to the degradation in connection quality for the first cellular network; establishing a second video call session on the legacy cellular network; and using the second video call session to continue the video call on the legacy cellular network.
Abstract:
A method for assisting a wireless communication device to return to a first network from a second network subsequent to termination of a voice call for which a Circuit Switched Fallback procedure was performed to transition from the first network to the second network for servicing of the voice call is provided. The method can include preventing transmission of a data flow for a data service after termination of the voice call. The method can further include searching for the first network while transmission of the data flow is prevented. If the first network is found, the method can additionally include reverting to the first network and servicing the data service on the first network. If the first network is not found, the method can also include remaining on the second network and servicing the data service on the second network.
Abstract:
A multi-mode communication device having a scan optimizer capable of prioritizing scan frequencies for different radio access technologies (RATs) during a network search. The scan frequency prioritization may be based on various network coverage considerations associated with RAT availability, RAT density within a region, geographic location, historic attachment for the multi-mode device, an operation mode of the multi-mode device, etc. The multimode device can utilize its scan optimizer to generate an optimized scan schedule to be employed for a limited duration during a network search to improve its likelihood of success in detecting and/or attaching to a network associated with a prioritized RAT. A default scan schedule having equal scan frequency prioritization can be employed by the multi-mode device at a time when the limited duration of the optimized scan schedule expires and no networks associated with a prioritized RAT have been acquired.
Abstract:
Reporting potential impacts of sounding reference signal-switching (SRS-switching) to a base station may include determining that SRS-switching is to be performed by a UE. Based on determining that SRS-switching is to be performed, potential impacts to one or more of a plurality of radio access technologies (RATs) caused by performing SRS-switching while sharing radio frequency (RF) front-ends (RFFE) between at least a subset of the plurality of RATS may be processed. The potential impacts may comprise at least one of transmit-blanking (Tx-blanking) and receive-blanking (Rx-blanking) associated with one or more of the subset of RATs. A communication that indicates the potential impacts of SRS-switching may be encoded for transmission to a base station. The base station may also provide priority configurations for determining how to handle Tx-blanking, Rx-blanking, and SRS-skipping associated with SRS-switching.
Abstract:
Various systems and methods disclosed herein describe improvements for beam management that leverage virtualization across a vertical polarization (V-Pol) and horizontal polarization (H-Pol). One or more of a user equipment (UE) and a base station may include an antenna array comprising V-Pol antenna elements and H-Pol antenna elements. The UE may determine a number of receive (Rx) beam of an Rx beam sweep are needed, signal this number to the base station, and perform the beam sweep according to one or both of the V-Pol and H-Pol. A UE may use group based beam reporting to indicate to the base station a transmit (Tx) beam upon which downlink MIMO using V-Pol and H-Pol may be supported by reporting a same transmission configuration indication (TCI) corresponding to the Tx beam for both a first Rx beam and a second Rx beam in a group based beam reporting message.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform negotiation of bearer type configuration and/or related parameters. A user equipment device (UE) and/or network may determine a bearer configuration and/or other parameters based on information or measurements of the UE. The UE and the BS may exchange data using a negotiated configuration.