Abstract:
In various embodiments, an actuating mechanism is employed to displace a conductor disposed within a fluidic channel, thereby reconfiguring an electronic component.
Abstract:
A microfluidic device for separating target components from a source fluid includes one or more source channels connected to one or more collection channels by one or more transfer channels. The target components of the source fluid can be magnetic or bound to magnetic particles using a know binding agent. A source fluid containing magnetically bound target components can be pumped through the source channel of the microfluidic device. A magnetic field gradient can be applied to the source fluid in the source channel causing the magnetically bound target components to migrate through the transfer channel into the collection channel. The collection channel can include a collection fluid that is stagnant until a predefined volume of source fluid is processed or a predefined volume of target components accumulate in the collection channel, at which point collection fluid can be pumped into the collection channel to flush the target components out of the collection channel. The target components can be subsequently analyzed for detection and diagnosis.
Abstract:
An implantable drug delivery apparatus for delivering a drug into a bodily fluid in a body cavity of a patient over a period of time includes a variable-volume vessel defining a working chamber for receiving a drug and recirculating a therapeutic fluid. The fluid can contain a bodily fluid, such as, for example, perilymph, and a drug. The device allows for the controlled delivery of the therapeutic fluid to a predetermined location in the bodily cavity of the patient, such as, for example, a cochlea of a human ear.
Abstract:
The invention generally relates to combining a plurality of flow streams. In various embodiments, a first channel transports a first laminar fluid flow, a second channel transports a second laminar fluid flow, and the first and second channels enter a merging region at an acute angle to one another along separate substantially parallel planes.
Abstract:
A real time three dimensional ultrasound imaging probe apparatus is configured to be placed inside a body. The apparatus comprises an elongated body having proximal and distal ends with an ultrasonic transducer phased array connected to and positioned on the distal end of the elongated body. The ultrasonic transducer phased array is positioned to emit and receive ultrasonic energy for volumetric forward scanning from the distal end of the elongated body. The ultrasonic transducer phased array includes a plurality of sites occupied by ultrasonic transducer elements. At least one ultrasonic transducer element is absent from at least one of the sites, thereby defining an interstitial site. A tool is positioned at the interstitial site. In particular, the tool can be a fiber optic lead, a suction tool, a guide wire, an electrophysiological electrode, or an ablation electrode. Related systems are also discussed.
Abstract:
A high-throughput flow system includes an array of wells and a separate mechanical tip positioned within each well. Each mechanical tip is separately actuated to impart a shear stress pattern. A separate sleeve may be associated with each tip for maintaining a predetermined distance between the tip and a floor of the tip's corresponding well, with each tip being rotatable within its corresponding sleeve. Alternatively, a separate post may be associated with each tip for maintaining a predetermined distance between the tip and a floor of the tip's corresponding well, with each tip being rotatable about its corresponding post.
Abstract:
In various embodiments, an actuating mechanism is employed to displace a conductor disposed within a fluidic channel, thereby reconfiguring an electronic component.
Abstract:
The invention generally relates to combining a plurality of flow streams. In various embodiments, a first channel transports a first laminar fluid flow, a second channel transports a second laminar fluid flow, and the first and second channels enter a merging region at an acute angle to one another along separate substantially parallel planes.
Abstract:
We have found that etching of a body that comprises exposed Si as well as a Ti-comprising metal layer (e.g., a patterned Ti/Pt layer) in an amine-based anisotropic etchant for Si (e.g., 100.degree. C. EDP) frequently results in undesirable changes in the Ti-comprising metal layer. We have also found that the changes can be substantially reduced or eliminated by electrolytic means, namely, by making the metal layer the anode in an electrolytic cell that contains the etchant.
Abstract:
A microfluidic device may include a substrate that defines a flow-control cavity and first and second channels in fluid communication with the flow-control cavity. A compliant membrane for regulating fluid flow through the flow-control cavity may surround at least a portion of the flow-control cavity.