Abstract:
A method of inducing latency in Mycobacterium permits preparation of an in vitro model system of latent mycobacterial infection. Latency is induced in a pure culture of Mycobacterium by exposing it to multiple stress conditions, including a low nutrient culture medium without glycerol, a low pH, a relatively high level of carbon dioxide and a relatively low gas phase oxygen level. An in vitro model of mycobacterial infection employs macrophages induced from THP1 cells which are then infected with Mycobacterium. The infected macrophages are grown under hypoxic conditions to induce latency in the mycobacteria. The in vitro model of infection is useful in evaluating compounds for activity against latent mycobacteria.
Abstract:
A method of inducing latency in Mycobacterium permits preparation of an in vitro model system of latent mycobacterial infection. Latency is induced in a pure culture of Mycobacterium by exposing it to multiple stress conditions, including a low nutrient culture medium without glycerol, a low pH, a relatively high level of carbon dioxide and a relatively low gas phase oxygen level. An in vitro model of mycobacterial infection employs macrophages induced from THP1 cells which are then infected with Mycobacterium. The infected macrophages are grown under hypoxic conditions to induce latency in the mycobacteria. The in vitro model of infection is useful in evaluating compounds for activity against latent mycobacteria.
Abstract:
The application reports the discovery that mycobacterial triacylglycerol synthase (MTTGS) enzymes also have a wax synthase function. This bifunctional enzymatic activity, or ‘dual function,’ implies that the enzymes contain separate binding sites for diacylglycerol and acyl alcohol and a common binding site for acyl-coenzyme A. Embodiments of the invention relate to methods of selection and/or design of therapeutic compounds that will reduce any potentially toxic side effects of candidate drugs designed to inhibit the mycobacterial enzyme.
Abstract:
This invention relates to a novel synergistic reversible solid/semi-solid organic composition, said composition comprising (a) at least one saturated long chain fatty acid and/or its glycerol esters and (b) one or more liquid neutral organic compounds, said ingredients (a) and (b) being present in a ratio between 0.1 to 40% by weight, and a process for producing said synergistic reversible solid/semi-solid organic composition by mixing the ingredients (a) and (b) defmed above in a ratio between 0.1 to 40% by weight, at a temperature between 2 to 50° C. and at a pressure in the range of 200 torr to 2500 torr.
Abstract:
A method of inducing latency in Mycobacterium permits preparation of an in vitro model system of latent mycobacterial infection. Latency is induced in a pure culture of Mycobacterium by exposing it to multiple stress conditions, including a low nutrient culture medium without glycerol, a low pH, a relatively high level of carbon dioxide and a relatively low gas phase oxygen level. An in vitro in vitro model of mycobacterial infection employs macrophages induced from THP1 cells which are then infected with Mycobacterium. The infected macrophages are grown under hypoxic conditions to induce latency in the mycobacteria. The in vitro model of infection is useful in evaluating compounds for activity against latent mycobacteria.
Abstract:
A method of inducing latency in Mycobacterium permits preparation of an in vitro model system of latent mycobacterial infection. Latency is induced in a pure culture of Mycobacterium by exposing it to multiple stress conditions, including a low nutrient culture medium without glycerol, a low pH, a relatively high level of carbon dioxide and a relatively low gas phase oxygen level. An in vitro model of mycobacterial infection employs macrophages induced from THP1 cells which are then infected with Mycobacterium. The infected macrophages are grown under hypoxic conditions to induce latency in the mycobacteria. The in vitro model of infection is useful in evaluating compounds for activity against latent mycobacteria.
Abstract:
Disclosed herein are novel methods for screening for compounds useful in treating or preventing tuberculosis. In exemplary embodiments, screening methods are based on the implementation or manipulation of triacylglycerol hydrolase like polypeptides or polynucleotides encoding the same. The methods are useful in identifying agents active against TB infection.
Abstract:
A method of inducing latency in Mycobacterium permits preparation of an in vitro model system of latent mycobacterial infection. Latency is induced in a pure culture of Mycobacterium by exposing it to multiple stress conditions, including a low nutrient culture medium without glycerol, a low pH, a relatively high level of carbon dioxide and a relatively low gas phase oxygen level. An in vitro model of mycobacterial infection employs macrophages induced from THP1 cells which are then infected with Mycobacterium. The infected macrophages are grown under hypoxic conditions to induce latency in the mycobacteria. The in vitro model of infection is useful in evaluating compounds for activity against latent mycobacteria.
Abstract:
A method of inducing latency in Mycobacterium permits preparation of an in vitro model system of latent mycobacterial infection. Latency is induced in a pure culture of Mycobacterium by exposing it to multiple stress conditions, including a low nutrient culture medium without glycerol, a low pH, a relatively high level of carbon dioxide and a relatively low gas phase oxygen level. An in vitro model of mycobacterial infection employs macrophages induced from THP1 cells which are then infected with Mycobacterium. The infected macrophages are grown under hypoxic conditions to induce latency in the mycobacteria. The in vitro model of infection is useful in evaluating compounds for activity against latent mycobacteria.
Abstract:
Disclosed herein are novel methods for screening for compounds useful in treating or preventing tuberculosis. In exemplary embodiments, screening methods are based on the implementation or manipulation of triacylglycerol synthase like polypeptides or polynucleotides encoding the same. The methods are useful in identifying agents active against TB infection.