-
公开(公告)号:CN117363942A
公开(公告)日:2024-01-09
申请号:CN202311401740.1
申请日:2023-10-26
Applicant: 重庆大学
Abstract: 本发明公开了一种Mg‑Gd‑Y‑Zn‑Zr系合金压铸流动性改善方法,其特征在于,在VW92合金中加入质量百分比0.5‑1.5%的Ca元素,提高其合金压铸流动性能。本发明还公开了一种压铸流动性好的高流动性Mg‑Gd‑Y‑Zn‑Zr系合金,即在已有VW92合金基础上添加了质量百分比0.5‑1.5%的Ca元素构成。本发明能够更好地提高Mg‑Gd‑Y‑Zn‑Zr系合金在压铸时的流动性能,改善产品质量。
-
公开(公告)号:CN117363941A
公开(公告)日:2024-01-09
申请号:CN202311361467.4
申请日:2023-10-20
Applicant: 重庆大学
Abstract: 本发明公开了一种降低稀土镁合金铸造材料热裂倾向性的方法,其特征在于,在稀土镁合金中加入0.5‑2.0%质量比例的Ca元素。本发明还公开了一种稀土镁合金,采用以下质量比例的组分配方,包括钇Y:3.5%‑4.5%,钕Nd:1.5%‑2.5%,稀土钆Gd:0.6%‑1.4%,锆Zr:0.3%‑0.6%,余量为镁Mg和不可避免的杂质,所述杂质的含量小于或等于0.05%;还包括0.5‑2.0%的钙Ca元素。本发明制备得到的Mg‑4Y‑2Nd‑1Gd‑0.5Zr‑xCa合金在拥有良好的抗热裂性情况下,还具有相比于其他高稀土镁合金更低的研究成本。
-
公开(公告)号:CN115537621B
公开(公告)日:2023-07-14
申请号:CN202211229624.1
申请日:2022-10-08
Applicant: 重庆大学
Abstract: 本发明公开了一种耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金,其特征在于,以质量百分比计,其包含有Gd:7.0‑9.5%,Y:1.4‑2.5%,Zn:1.3‑2.5%,Mn:0.0‑2.5%,余量为Mg和不可避免的杂质,所述杂质的含量小于/等于0.02%。本发明还公开了该耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金的制备方法。本发明所公开的耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金,其通过添加元素Mn,减少了稀土元素含量,降低了材料制备成本和保护了环境;再通过对铸态合金进行固溶强化和挤压变形处理,使得Mg‑Gd‑Y‑Zn‑Mn合金在250℃高温下的抗拉强度318‑350MPa,屈服强度为235‑294MPa,在航空航天、汽车工业、电子信息等领域有着广阔的应用前景。
-
公开(公告)号:CN115537621A
公开(公告)日:2022-12-30
申请号:CN202211229624.1
申请日:2022-10-08
Applicant: 重庆大学
Abstract: 本发明公开了一种耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金,其特征在于,以质量百分比计,其包含有Gd:7.0‑9.5%,Y:1.4‑2.5%,Zn:1.3‑2.5%,Mn:0.0‑2.5%,余量为Mg和不可避免的杂质,所述杂质的含量小于/等于0.02%。本发明还公开了该耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金的制备方法。本发明所公开的耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金,其通过添加元素Mn,减少了稀土元素含量,降低了材料制备成本和保护了环境;再通过对铸态合金进行固溶强化和挤压变形处理,使得Mg‑Gd‑Y‑Zn‑Mn合金在250℃高温下的抗拉强度318‑350MPa,屈服强度为235‑294MPa,在航空航天、汽车工业、电子信息等领域有着广阔的应用前景。
-
公开(公告)号:CN119332133A
公开(公告)日:2025-01-21
申请号:CN202411470353.8
申请日:2024-10-21
Applicant: 重庆大学
Abstract: 本发明公开了一种通过搅拌和高速剪切制备AlN颗粒增强镁基复合材料的方法,包括如下步骤:1)用水模拟法确定AlN颗粒分散的最佳高速剪切搅拌参数;2)将镁熔体降温至近半固态温度,随后将AlN颗粒加入镁熔体中,随即进行机械搅拌进行初步分散,得到半固态熔体;3)将半固态熔体升温至熔融温度后,进行高速剪切分散,得到镁基复合材料熔体;5)将镁基复合材料熔体进行水冷,得到AlN颗粒增强镁基复合材料。本发明通过机械搅拌和高速剪切搅拌结合的方法,基本消除了微米级AlN颗粒沉降以及团聚问题,有效提高了AlN颗粒的收得率和均匀分散程度,进而显著提高了AlN颗粒增强镁基复合材料的力学性能。
-
公开(公告)号:CN118531277A
公开(公告)日:2024-08-23
申请号:CN202410608877.2
申请日:2024-05-16
Applicant: 重庆大学
Abstract: 本发明公开了一种低成本耐高温高强度Mg‑Gd‑Y‑Zn‑Mn合金,包括:以质量百分比计,其包含有Gd:2.0‑8.5%,Y:2.0‑8.5%,Zn:1.3‑2.0%,Mn:0.8‑1.5%,且所述Gd/Y的质量比为1:(2‑4),余量为Mg和不可避免的杂质。本发明还提供了该合金的制备方法。本申请通过调配Gd:Y的值以及结合其它特定的组分比例,再通过对铸态合金进行固溶强化和挤压变形处理,使得该合金在降低制备成本的同时,还具有优异的耐高温性能;当Gd:Y的质量比值控制在4:6时,该镁合金在250℃高温下的抗拉强度为373MPa,屈服强度为325MPa;当Gd:Y的质量比值控制在2:8时,该镁合金在250℃高温下的抗拉强度为352MPa,屈服强度为286MPa。
-
公开(公告)号:CN117230341A
公开(公告)日:2023-12-15
申请号:CN202311210107.4
申请日:2023-09-19
Applicant: 重庆大学
Abstract: 本发明公开了一种改善镁稀土基复合材料中微米级AlN颗粒团聚的方法,包括如下步骤:1)AlN/Al复合粉末的制备;2)在镁稀土基合金的半固态温区加入AlN/Al复合粉末,采用机械搅拌分散均匀,得镁稀土基复合材料熔体;3)将镁稀土基复合材料熔体升温,保温静置后水冷,得到镁稀土基复合材料。本发明的方法通过改变Al元素的加入形式,用Al粉代替Al锭,并将Al粉用于制备复合粉末实现AlN颗粒的预先分散,再结合机械搅拌不仅有效减少了AlN颗粒的团聚,还有效地改善了微米级AlN颗粒沉降的问题,提高了AlN颗粒在镁稀土基合金在垂直方向上的均匀分布,使其适用于后续的挤压工艺,为复合材料的后续变形提供了保障,是适于商业化应用的技术手段。
-
公开(公告)号:CN115976384A
公开(公告)日:2023-04-18
申请号:CN202211722809.6
申请日:2022-12-30
Applicant: 重庆大学
Abstract: 本发明公开了一种具有优异高温力学性能的AlN/AE44复合材料,所述复合材料中各组分的质量百分比含量为:镁基体合金:99‑99.8%,AlN颗粒:0.2%‑1.0%;其中所述镁基体合金包括RE:3.5‑4.5%,Al:3.5‑4.5%,余量为Mg。本发明还提供了一种具有优异高温力学性能的AlN/AE44复合材料的制备方法。通过采用耐热的AlN颗粒强化镁基体合金,同时在熔炼过程引入机械搅拌和超声波分散促进AlN颗粒的均匀分散;由于AlN颗粒与镁基体合金的界面反应,使得AlN颗粒的加入,有效促进了AE44合金内的球粒状Al‑RE第二相的大部分析出,并且第二相在晶粒内保持弥散均匀分布,进而有效阻碍合金变形过程中晶内的位错运动,对合金的高温性能起明显的强化作用,从而有效提升了合金的高温性能。
-
公开(公告)号:CN117626082A
公开(公告)日:2024-03-01
申请号:CN202311702679.4
申请日:2023-12-12
Applicant: 重庆大学
Abstract: 本发明公开了一种适于热挤压工艺的高强耐热Mg‑Gd‑Y‑Zn‑Al变形镁合金,以质量百分比计包括如下组分:Gd:9~11%,Y:3~4%,Zn:0.8~1.2%,Al:0.7~2.0%,余量为Mg。本发明还提供了合金的制备方法。本发明所提供的Mg‑Gd‑Y‑Zn‑Al变形镁合金,通过采用特定比例的RE元素,以及在Mg‑Gd‑Y合金中添加0.7%~2.0%的微量Al元素,能够生成条状的(Mg,Al)‑RE共晶相,并且生成的Al2RE相能够显著细化Mg‑Gd‑Y合金晶粒;Zn、Al的共同添加也能促进层片状LPSO相的形成,Al2RE与LPSO相在高温下能阻碍位错和稳定晶界,经过热挤压变形后,250℃下的抗拉强度可达327MPa;同时以Al作为合金的晶粒细化元素,能有效降低合金制备的成本。
-
公开(公告)号:CN115976384B
公开(公告)日:2024-02-23
申请号:CN202211722809.6
申请日:2022-12-30
Applicant: 重庆大学
Abstract: 本发明公开了一种具有优异高温力学性能的AlN/AE44复合材料,所述复合材料中各组分的质量百分比含量为:镁基体合金:99‑99.8%,AlN颗粒:0.2%‑1.0%;其中所述镁基体合金包括RE:3.5‑4.5%,Al:3.5‑4.5%,余量为Mg。本发明还提供了一种具有优异高温力学性能的AlN/AE44复合材料的制备方法。通过采用耐热的AlN颗粒强化镁基体合金,同时在熔炼过程引入机械搅拌和超声波分散促进AlN颗粒的均匀分散;由于AlN颗粒与镁基体合金的界面反应,使得AlN颗粒的加入,有效促进了AE44合金内的球粒状Al‑RE第二相的大部分析出,并且第二相在晶粒内保持弥散均匀分布,进而有效阻碍合金变形过程中晶内的位错运动,对合金的高温性能起明显的强化作用,从而有效提升了合金的高温性能。
-
-
-
-
-
-
-
-
-