基于低秩表示的迭代高光谱图像无损压缩方法

    公开(公告)号:CN113068044B

    公开(公告)日:2022-01-11

    申请号:CN202110312680.0

    申请日:2021-03-24

    Abstract: 本发明公开了一种基于低秩表示的迭代高光谱图像无损压缩方法,解决了传统压缩方法忽略了图像空间的相关性,聚类结果不稳定,模块之间无联系的问题。实现步骤包括:定义光谱角相似性度量方法;对原始图像粗略聚类;低秩表示求解粗略聚类块系数矩阵;对系数矩阵再聚类得到初始聚类结果;对初始聚类结果迭代优化得到最终聚类块的预测系数与预测残差;接着进行熵编码,得到待传输的码流文件;熵解码后在解码端对码流文件解压缩,得到无损压缩后的高光谱图像。本发明定义光谱角相关性度量方法,增加对空间相关性的利用;低秩表示与子空间聚类相结合,增加聚类结果稳定性;通过迭代优化关联各个模块,增加了结果压缩比。应用于影像压缩领域。

    基于深度双向LSTM孪生网络的极化SAR分类方法

    公开(公告)号:CN108846426B

    公开(公告)日:2022-01-11

    申请号:CN201810539758.0

    申请日:2018-05-30

    Abstract: 本发明公开一种基于深度卷积双向LSTM孪生网络的极化SAR分类方法,主要解决现有方法中由于极化SAR数据标记样本较少造成分类精度低的问题。其实现步骤为:1)输入待分类极化SAR图像与其真实地物标记,并进行Lee滤波;2)从滤波后的数据中提取时序特征向量并划分训练集和测试集;3)对训练集中的样本两两组合得到样本对训练集;4)搭建深度卷积双向LSTM孪生网络并用训练集和样本对训练集对其进行训练;5)用训练好的网络对测试集样本进行分类,获得地物类别。本发明在孪生架构下扩充训练集、提取差异化特征,于小样本标记条件下更为合理且充分的利用空间邻域信息进行双向时序建模,使模型分类准确率大幅度提高。

    基于组低秩表示的迭代高光谱图像无损压缩方法

    公开(公告)号:CN113068044A

    公开(公告)日:2021-07-02

    申请号:CN202110312680.0

    申请日:2021-03-24

    Abstract: 本发明公开了一种基于组低秩表示的迭代高光谱图像无损压缩方法,解决了传统压缩方法忽略了图像空间的相关性,聚类结果不稳定,模块之间无联系的问题。实现步骤包括:定义光谱角相似性度量方法;对原始图像粗略聚类;低秩表示求解粗略聚类块系数矩阵;对系数矩阵再聚类得到初始聚类结果;对初始聚类结果迭代优化得到最终聚类块的预测系数与预测残差;接着进行熵编码,得到待传输的码流文件;熵解码后在解码端对码流文件解压缩,得到无损压缩后的高光谱图像。本发明定义光谱角相关性度量方法,增加对空间相关性的利用;低秩表示与子空间聚类相结合,增加聚类结果稳定性;通过迭代优化关联各个模块,增加了结果压缩比。应用于影像压缩领域。

    基于深度双向LSTM孪生网络的极化SAR分类方法

    公开(公告)号:CN108846426A

    公开(公告)日:2018-11-20

    申请号:CN201810539758.0

    申请日:2018-05-30

    Abstract: 本发明公开一种基于深度卷积双向LSTM孪生网络的极化SAR分类方法,主要解决现有方法中由于极化SAR数据标记样本较少造成分类精度低的问题。其实现步骤为:1)输入待分类极化SAR图像与其真实地物标记,并进行Lee滤波;2)从滤波后的数据中提取时序特征向量并划分训练集和测试集;3)对训练集中的样本两两组合得到样本对训练集;4)搭建深度卷积双向LSTM孪生网络并用训练集和样本对训练集对其进行训练;5)用训练好的网络对测试集样本进行分类,获得地物类别。本发明在孪生架构下扩充训练集、提取差异化特征,于小样本标记条件下更为合理且充分的利用空间邻域信息进行双向时序建模,使模型分类准确率大幅度提高。

    基于空间-语义通道的协同显著目标检测方法

    公开(公告)号:CN108388901A

    公开(公告)日:2018-08-10

    申请号:CN201810112593.9

    申请日:2018-02-05

    Abstract: 本发明公开了一种基于空间-语义通道的协同显著目标检测方法。本发明通过模拟人类视觉,根据图像间的协同辅助规则,对待检测的群组图像中彩色图和图像深度图,进行空间协同和语义协同双通道并行处理,利用协同显著性先验获得两种初步协同显著图,融合两个初步协同显著图,得到最终的协同显著图,实现复杂场景群组图像中共同的显著目标的检测,有效地突出了群组图像的共同显著目标并且抑制了复杂的背景噪声,使得本发明具有较好的检测结果,提高了检测的准确率和召回率。

Patent Agency Ranking