-
公开(公告)号:CN111859534B
公开(公告)日:2023-12-26
申请号:CN202010564129.0
申请日:2020-06-19
Applicant: 空气动力学国家重点实验室 , 西北工业大学
IPC: G06F30/15 , G06F30/23 , G06F30/27 , G06F30/28 , G06N3/0455 , G06N3/084 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种热气动弹性分析适用的热固耦合结构动力学降阶模型方法,属于空气动力学的技术领域,该方法包括:S1:对结构温度场进行降阶,构建结构温度场降阶模型,得到任意时刻结构温度场降阶后的结构温度场低阶向量#imgabs0#S2:选用参考结构的模态振型作为参考模态振型Φref,并基于Φref将变形场降阶为低维向量q;S3:建立受热结构的动力学方程:#imgabs1#S4:建立受热结构的热固耦合动力学模型,在q和#imgabs2#构成的L+N维空间内进行抽样,获得一系列具有不同变形场和温度场载荷的样本工况,通过系统辨识出式(7)中的M、D、和K(1),以训练#imgabs3#和#imgabs4#训练完成后,进行时变温度载荷下的非线性结构动力学分析,以使基于神经网络的热固耦合动力学模型为非线性模型且具有普适性。
-
公开(公告)号:CN112668113B
公开(公告)日:2022-11-01
申请号:CN202011527506.X
申请日:2020-12-22
Applicant: 空气动力学国家重点实验室
IPC: G06F30/17 , G06F30/23 , G06F113/26 , G06F119/08
Abstract: 本发明提供了一种复合材料多尺度防热优化方法,包括以下步骤:步骤1、根据设计变量建立待优化复合材料的有限元模型包括细观有限元传热分析模型、宏观有限元传热分析模型以及胞体扩展模型;步骤2、对建立的细观有限元传热分析模型进行细观传热分析,得到等效热物性参数;通过胞体扩展模型将细观传热分析获得的等效热物性参数传入宏观有限元传热分析模型进行宏观传热分析;传热分析中,通过调整设计变量对细观传热分析模型和宏观传热分析模型进行优化,若优化后目标满足约束条件则结束优化,输出传热分析结果;若不满足约束条件,重新调整有限元模型的设计变量,反复迭代直至输出传热分析结果。采用本发明的方案可以以更有效降低温度同时引入优化算法和网格自由变形技术有效提高计算效率。
-
公开(公告)号:CN111859534A
公开(公告)日:2020-10-30
申请号:CN202010564129.0
申请日:2020-06-19
Applicant: 空气动力学国家重点实验室 , 西北工业大学
IPC: G06F30/15 , G06F30/23 , G06F30/27 , G06F30/28 , G06N3/04 , G06N3/08 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种热气动弹性分析适用的热固耦合结构动力学降阶模型方法,属于空气动力学的技术领域,该方法包括:S1:对结构温度场进行降阶,构建结构温度场降阶模型,得到任意时刻结构温度场降阶后的结构温度场低阶向量 S2:选用参考结构的模态振型作为参考模态振型Φref,并基于Φref将变形场降阶为低维向量q;S3:建立受热结构的动力学方程:S4:建立受热结构的热固耦合动力学模型,在q和构成的L+N维空间内进行抽样,获得一系列具有不同变形场和温度场载荷的样本工况,通过系统辨识出式(7)中的M、D、和K(1),以训练和 训练完成后,进行时变温度载荷下的非线性结构动力学分析,以使基于神经网络的热固耦合动力学模型为非线性模型且具有普适性。
-
公开(公告)号:CN111859532B
公开(公告)日:2023-11-28
申请号:CN202010547613.2
申请日:2020-06-16
Applicant: 空气动力学国家重点实验室
IPC: G06F30/15 , G06F30/28 , G16C20/10 , G06F111/10 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明涉及热壁修正方法技术领域,公开了一种用于高速飞行器气动加热数值预测的考虑高超声速化学非平衡效应的改进热壁修正方法,本方法将对流热流按物理过程的贡献进行分解,其中温度梯度引起的热流部分满足传统线性的热壁修正方法,而反应扩散引起的热流部分与壁面高温化学作用相关,根据壁面化学反应机制做相应处理。分别求解温度梯度引起的热流和反应扩散引起的热流,再将求解到的热流相加,得到壁面总热流。本发明提出的方法只需要求解冷壁和绝热壁条件下的高超声速流场,不需要流固耦合迭代求解,计算效率高。
-
公开(公告)号:CN112668113A
公开(公告)日:2021-04-16
申请号:CN202011527506.X
申请日:2020-12-22
Applicant: 空气动力学国家重点实验室
IPC: G06F30/17 , G06F30/23 , G06F113/26 , G06F119/08
Abstract: 本发明提供了一种复合材料多尺度防热优化方法,包括以下步骤:步骤1、根据设计变量建立待优化复合材料的有限元模型包括细观有限元传热分析模型、宏观有限元传热分析模型以及胞体扩展模型;步骤2、对建立的细观有限元传热分析模型进行细观传热分析,得到等效热物性参数;通过胞体扩展模型将细观传热分析获得的等效热物性参数传入宏观有限元传热分析模型进行宏观传热分析;传热分析中,通过调整设计变量对细观传热分析模型和宏观传热分析模型进行优化,若优化后目标满足约束条件则结束优化,输出传热分析结果;若不满足约束条件,重新调整有限元模型的设计变量,反复迭代直至输出传热分析结果。采用本发明的方案可以以更有效降低温度同时引入优化算法和网格自由变形技术有效提高计算效率。
-
公开(公告)号:CN113782106B
公开(公告)日:2024-04-16
申请号:CN202110862009.3
申请日:2021-07-29
Applicant: 空气动力学国家重点实验室
IPC: G16C20/10 , G16C10/00 , G06F30/28 , G06F113/08
Abstract: 本发明公开了一种用于CFD的高焓离解气体表面催化反应速率的求解方法,包括基于固体表面存在有限个数的吸附位点的理论,求解气相反应物在固体表面吸附位点上发生的四步反应的反应速率;其中,气相反应物在固体表面吸附位点上发生的四步反应分别为:气相原子的化学吸附、一个气相原子和一个吸附原子的ER复合、两个吸附原子的LH复合和吸附原子的热解附。通过本发明方法获得的反应速率可用以解决化学非平衡流场求解过程遇到的催化壁面表征困难、边界质量能量输运不准确的问题。
-
公开(公告)号:CN113782106A
公开(公告)日:2021-12-10
申请号:CN202110862009.3
申请日:2021-07-29
Applicant: 空气动力学国家重点实验室
IPC: G16C20/10 , G16C10/00 , G06F30/28 , G06F113/08
Abstract: 本发明公开了一种用于CFD的高焓离解气体表面催化反应速率的求解方法,包括基于固体表面存在有限个数的吸附位点的理论,求解气相反应物在固体表面吸附位点上发生的四步反应的反应速率;其中,气相反应物在固体表面吸附位点上发生的四步反应分别为:气相原子的化学吸附、一个气相原子和一个吸附原子的ER复合、两个吸附原子的LH复合和吸附原子的热解附。通过本发明方法获得的反应速率可用以解决化学非平衡流场求解过程遇到的催化壁面表征困难、边界质量能量输运不准确的问题。
-
公开(公告)号:CN111859532A
公开(公告)日:2020-10-30
申请号:CN202010547613.2
申请日:2020-06-16
Applicant: 空气动力学国家重点实验室
IPC: G06F30/15 , G06F30/28 , G16C20/10 , G06F111/10 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明涉及热壁修正方法技术领域,公开了一种用于高速飞行器气动加热数值预测的考虑高超声速化学非平衡效应的改进热壁修正方法,本方法将对流热流按物理过程的贡献进行分解,其中温度梯度引起的热流部分满足传统线性的热壁修正方法,而反应扩散引起的热流部分与壁面高温化学作用相关,根据壁面化学反应机制做相应处理。分别求解温度梯度引起的热流和反应扩散引起的热流,再将求解到的热流相加,得到壁面总热流。本发明提出的方法只需要求解冷壁和绝热壁条件下的高超声速流场,不需要流固耦合迭代求解,计算效率高。
-
公开(公告)号:CN111859531A
公开(公告)日:2020-10-30
申请号:CN202010540454.3
申请日:2020-06-15
Applicant: 空气动力学国家重点实验室
IPC: G06F30/15 , G06F30/28 , G16C20/10 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明涉及流体力学数值计算技术领域,公开了一种求解化学非平衡流动化学反应源项的预估修正方法,包括以下步骤:a.根据当前时刻的流场解获得当前时刻的组分密度和化学反应生成率,预设该计算轮次N=1;b.开展下一轮预估,通过二分法剖分时间离散间隔;依次对二分点的参数值进行预估,并对上轮各点的参数值进行修正;c.计算第N+1轮和第N轮的预估值之差,若相对值较大,则增加一轮预估修正,即N=N+1,进行步骤b操作,否则跳转至下一步骤;d.将第N+1轮的计算结果作为最终结果。本方法采用核心控制方程隐式处理和化学反应源项半隐式处理,在保持原有LUSGS算法的优势的同时,解决了化学反应源项的刚性问题。
-
公开(公告)号:CN111859531B
公开(公告)日:2023-10-13
申请号:CN202010540454.3
申请日:2020-06-15
Applicant: 空气动力学国家重点实验室
IPC: G06F30/15 , G06F30/28 , G16C20/10 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明涉及流体力学数值计算技术领域,公开了一种求解化学非平衡流动化学反应源项的预估修正方法,包括以下步骤:a.根据当前时刻的流场解获得当前时刻的组分密度和化学反应生成率,预设该计算轮次N=1;b.开展下一轮预估,通过二分法剖分时间离散间隔;依次对二分点的参数值进行预估,并对上轮各点的参数值进行修正;c.计算第N+1轮和第N轮的预估值之差,若相对值较大,则增加一轮预估修正,即N=N+1,进行步骤b操作,否则跳转至下一步骤;d.将第N+1轮的计算结果作为最终结果。本方法采用核心控制方程隐式处理和化学反应源项半隐式处理,在保持原有LUSGS算法的优势的同时,解决了化学反应源项的刚性问题。
-
-
-
-
-
-
-
-
-