一种基于卷积神经网络的船舶吃水线提取方法

    公开(公告)号:CN109903303A

    公开(公告)日:2019-06-18

    申请号:CN201910135853.9

    申请日:2019-02-25

    Abstract: 本发明涉及港口散货船舶计量技术领域,尤其涉及一种基于卷积神经网络的船舶吃水线提取方法,用于解决港口船舶吃水线读取不准确问题。本发明首先通过搭载摄像机的履带电磁吸附式爬壁机器人拍摄六面水尺视频,制作深度学习训练数据集,用于训练学习得到模型参数。使用时,将采集到的视频每一帧输入到训练好的深度学习网络,得到二值分割结果图片,进行水平投影,获取水线位置。本发明所述的方法采用了目前最先进的深度学习技术,提取的水线准确率高,鲁棒性好,有效解决了复杂环境下吃水线提取精度问题。

Patent Agency Ranking