一种基于机器学习的根因定位方法和系统

    公开(公告)号:CN114416423A

    公开(公告)日:2022-04-29

    申请号:CN202210089130.1

    申请日:2022-01-25

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于机器学习的根因定位方法,包括:获取微服务应用系统中调用过程的数据所组成的调用链数据,获取微服务应用系统的业务指标数据、容器指标、中间件指标、主机指标、以及数据库指标数据;将获取的业务指标数据中的时间戳、平均调用时间、业务量、成功数量、成功率输入到训练好的支持向量机SVM网络中,以得到检测结果,并判断检测结果是否为异常,如果异常则对得到的检测结果进行根因检测,以得到故障发生的节点、以及导致故障发生的性能指标。本发明能够解决现有基于静态阈值设置的根因检测方法准确率低的技术问题,以及现有基于滑动窗口的根因检测方法难以识别实际数据指标的周期特性的技术问题。

    一种基于图注意力网络的中文命名实体识别方法和系统

    公开(公告)号:CN114417874B

    公开(公告)日:2024-10-15

    申请号:CN202210083152.7

    申请日:2022-01-25

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于图注意力网络的中文命名实体识别方法,包括以下步骤:获取待中文命名实体识别的中文语句,基于得到的中文语句构建中文语句对应的字向量集合X,将得到的中文语句对应的字向量集合X输入训练好的基于图注意力网络的中文命名实体识别模型中,以得到该中文语句对应的中文命名实体标注。本发明能够解决现有BiLSTM‑CRF模型中存在的单词边界与实体边界不一致、模型输入特征单一的技术问题,以及现有基于图注意力网络的协同图网络模型中存在的传统图注意力计算方法损害图注意力表达能力的技术问题。

    用于在虚拟分布式异构环境下实现多GPU调度的方法和系统

    公开(公告)号:CN112612613A

    公开(公告)日:2021-04-06

    申请号:CN202011574923.X

    申请日:2020-12-28

    Applicant: 湖南大学

    Abstract: 本发明公开了一种虚拟分布式异构环境下实现多GPU调度的方法,其根据OpenStack创建的虚拟环境下的GPU集群,将GPU本地任务划分为更细粒度的GPU本地子任务,然后根据数据本地性以及从节点上所有GPU的流状态和内存资源状态将GPU本地子任务调度到指定GPU上执行,并对超过GPU硬件工作队列数量的CUDA流进一步调整主机调度任务的顺序消除“虚假依赖”,以及对机器学习/深度学习每次迭代产生的中间数据进一步处理来提高GPU内存利用率从而充分平衡各个GPU上的工作负载,降低OpenStack创建的虚拟环境下GPU应用程序的执行时间。本发明能解决现有分布式异构OpenStack处理框架创建的多GPU环境中存在的吞吐量低、无法有效利用多个GPU、以及由于缺乏有效GPU负载均衡策略导致时间开销大的技术问题。

    一种基于机器学习的根因定位方法和系统

    公开(公告)号:CN114416423B

    公开(公告)日:2024-08-23

    申请号:CN202210089130.1

    申请日:2022-01-25

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于机器学习的根因定位方法,包括:获取微服务应用系统中调用过程的数据所组成的调用链数据,获取微服务应用系统的业务指标数据、容器指标、中间件指标、主机指标、以及数据库指标数据;将获取的业务指标数据中的时间戳、平均调用时间、业务量、成功数量、成功率输入到训练好的支持向量机SVM网络中,以得到检测结果,并判断检测结果是否为异常,如果异常则对得到的检测结果进行根因检测,以得到故障发生的节点、以及导致故障发生的性能指标。本发明能够解决现有基于静态阈值设置的根因检测方法准确率低的技术问题,以及现有基于滑动窗口的根因检测方法难以识别实际数据指标的周期特性的技术问题。

    一种基于文本关系图的多文本摘要生成方法

    公开(公告)号:CN112749253A

    公开(公告)日:2021-05-04

    申请号:CN202011574822.2

    申请日:2020-12-28

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于文本关系图的多文本摘要生成方法,其包括三个阶段:第一个阶段是根据所有输入文本,构建文本之间的关系图,并对文本进行特征提取;第二个阶段是利用第一阶段生成的文本关系图数据和文本特征,结合图神经网络进行高阶特征提取。第三个阶段是对前两个阶段编码的文本特征进行解码,生成摘要。在第二个阶段中,是将构建的文档关系图和经过编码器编码的文档表征作为图卷积神经网络的输入,进行前向传播,提取更高阶的文本特征,使得图中每个文档节点都可以获得领域节点信息,丰富了文档表征。本发明在多个文档输入时可以有效捕捉其相互间关系,克服传统方法不能充分利用文本之间关系的缺陷。

    用于在虚拟分布式异构环境下实现多GPU调度的方法和系统

    公开(公告)号:CN112612613B

    公开(公告)日:2023-06-23

    申请号:CN202011574923.X

    申请日:2020-12-28

    Applicant: 湖南大学

    Abstract: 本发明公开了一种虚拟分布式异构环境下实现多GPU调度的方法,其根据OpenStack创建的虚拟环境下的GPU集群,将GPU本地任务划分为更细粒度的GPU本地子任务,然后根据数据本地性以及从节点上所有GPU的流状态和内存资源状态将GPU本地子任务调度到指定GPU上执行,并对超过GPU硬件工作队列数量的CUDA流进一步调整主机调度任务的顺序消除“虚假依赖”,以及对机器学习/深度学习每次迭代产生的中间数据进一步处理来提高GPU内存利用率从而充分平衡各个GPU上的工作负载,降低OpenStack创建的虚拟环境下GPU应用程序的执行时间。本发明能解决现有分布式异构OpenStack处理框架创建的多GPU环境中存在的吞吐量低、无法有效利用多个GPU、以及由于缺乏有效GPU负载均衡策略导致时间开销大的技术问题。

Patent Agency Ranking