一种自动驾驶汽车协同型编队控制方法、装置及存储介质

    公开(公告)号:CN117485337A

    公开(公告)日:2024-02-02

    申请号:CN202210877502.7

    申请日:2022-07-25

    Abstract: 本申请公开了一种自动驾驶汽车协同型编队控制方法、装置及存储介质,方法包括:在预设地理范围内,确定目标车辆的车辆行驶信息;基于车辆行驶信息,以及获取到的预设地理范围内的静态环境信息,确定目标车辆的参考行驶信息,其中静态环境信息包括多条车道的道路信息,参考行驶信息包括目标车辆的至少一个候选路径;基于获取到的目标车辆的周围车辆的周车行驶信息,利用参考行驶信息,确定各个候选路径上的目标车辆对应的跟驰前车;针对候选路径以及跟驰前车,实时构建有限时域最优控制问题,以利用有限时域最优控制问题,确定目标车辆对应的目标行驶轨迹以及相应的目标跟驰前车。该方法实现多车协同型编队决策控制的自动驾驶功能。

    一种自动驾驶决策功能训练方法、系统及存储介质

    公开(公告)号:CN117521838A

    公开(公告)日:2024-02-06

    申请号:CN202210879625.4

    申请日:2022-07-25

    Abstract: 本发明提供了一种自动驾驶决策功能训练方法、系统及存储介质,上述方法包括:获取自动驾驶数据集,并在自动驾驶数据集中随机采样得到训练数据集;根据训练数据集以及设定的策略更新步数和策略参数计算得到随机梯度,并利用随机梯度计算得到无偏差的共轭动量;根据无偏差的共轭动量以及设定的策略参数学习率和速度因子,计算得到与策略参数对应的自适应学习率;基于无偏差的共轭动量和自适应学习率对所述策略参数进行更新;对所述策略更新步数进行迭代计算,在达到设定的最大策略更新步数的情况下,得到优化后的策略参数,以使自动驾驶决策功能训练系统采用优化后的策略参数进行自动驾驶决策,从而有效保障自动驾驶决策功能的智能性。

    一种自动驾驶汽车行驶风险模型的参数标定方法

    公开(公告)号:CN116259039A

    公开(公告)日:2023-06-13

    申请号:CN202310249358.7

    申请日:2023-03-15

    Applicant: 清华大学

    Abstract: 本公开提供的一种自动驾驶汽车行驶风险模型的参数标定方法,包括:设计包含低、中、高三种复杂度类型的动态交通场景,构建包含交通元素状态信息的动态交通场景数据库;搭建驾驶员认知风险捕捉系统,用于播放动态交通场景数据库内的视频、记录用于反映驾驶员认知风险的时变信号捕捉设备的反馈数据并将两者在时间上对齐;进行驾驶员认知风险捕捉实验,利用时间同步的交通元素状态信息和所述反馈数据形成实验数据集;通过控制变量方法,逐步利用低、中、高复杂度场景数据对行驶风险模型的参数进行标定。本公开将动态交通场景信息与驾驶员风险感知的时变信号相匹配,能够提升行驶风险模型的准确性。

    面向端到端自动驾驶的安全强化学习训练方法及装置

    公开(公告)号:CN119599088A

    公开(公告)日:2025-03-11

    申请号:CN202411432359.6

    申请日:2024-10-14

    Applicant: 清华大学

    Abstract: 本申请涉及自动驾驶技术领域,特别涉及一种面向端到端自动驾驶的安全强化学习训练方法及装置,其中,方法包括:基于预设驾驶环境模型和不确定性约束衰减函数,检测车辆的当前决控策略的安全状态;利用预设集成模型拟合预设驾驶环境模型的分散随机误差;根据价值函数的自洽条件更新价值函数,评估当前决控策略的性能价值;根据不确定性约束衰减函数的自洽条件,更新不确定性约束衰减函数,扩展对应的可行区域;在安全状态达到预设等级时,基于随机误差、性能价值和扩展后的可行区域对当前决控策略进行迭代更新,直至当前决控策略的平均累计回报达到预设阈值或者达到最大迭代次数,得到最终可行决控策略,以强化目标自动驾驶系统。

    一种面向自动驾驶汽车的约束型环境安全探索方法

    公开(公告)号:CN118964791A

    公开(公告)日:2024-11-15

    申请号:CN202410966744.2

    申请日:2024-07-18

    Applicant: 清华大学

    Abstract: 本申请提出了一种面向自动驾驶汽车的约束型环境安全探索方法,涉及自动驾驶技术领域,其中,该方法包括:步骤S1:获取初始的不确定模型;步骤S2:采用不动点迭代求解不确定模型下的最大可行区域;步骤S3:遍历最大可行区域内的所有状态动作对,通过与环境交互采集环境数据;步骤S4:利用最大可行区域内的环境数据,采用最大团搜索求解最大可行区域下的近似最小不确定模型,并将不确定模型更新为近似最小不确定模型;步骤S5:迭代进行步骤S2‑S4,直至最大可行区域和不确定模型不再更新,得到驾驶策略的最大可行区域。采用上述方案的本发明能够获取约束型环境中可安全探索的最大可行区域。

    一种适用于智能汽车的结构化道路场景生成方法

    公开(公告)号:CN116304608A

    公开(公告)日:2023-06-23

    申请号:CN202310154061.2

    申请日:2023-02-23

    Applicant: 清华大学

    Abstract: 本公开提供的适用于智能汽车的结构化道路场景生成方法,包括:选取基准道路场景结构,构建其“结点‑边”图结构模型,该模型中的结点包括与交叉路口相对应的中心结点和与道路场景结构的出入口相对应的端结点,该模型中的边用于连接结点,对应道路场景结构的出入口之间的相邻两向所有车道形成的路段;对“结点‑边”图结构模型中的结点和边进行随机化处理,生成随机化“结点‑边”图结构模型;判断随机化“结点‑边”图结构模型是否合规,若不合规,则重新生成随机化“结点‑边”图结构模型;将合规的随机化“结点‑边”图结构模型对应的道路场景结构输出。本公开可解决智能汽车在特定场景训练的驾驶策略泛化性能差、在线路径规划实时性差等问题。

    一种智能决策算法与仿真平台的联合互锁调用方法

    公开(公告)号:CN116070448A

    公开(公告)日:2023-05-05

    申请号:CN202310132213.9

    申请日:2023-02-09

    Applicant: 清华大学

    Abstract: 本申请提出了一种智能决策算法与仿真平台的联合互锁调用方法,涉及联合仿真技术领域,包括在智能决策算法处创建算法侧模块,在仿真平台处创建平台侧模块,并进行总初始化操作,其中,算法侧模块与平台测模块在同一个进程的两个线程内分别运行;分别对算法侧模块和平台侧模块进行重置操作,并重置共享上下文状态;分别对算法侧模块和平台侧模块进行步进操作,并借助共享上下文进行数据交换;在智能决策算法要求重置称为一个采样循环时,停止步进操作;反复执行采样循环直至智能决策算法运行结束。本申请在智能决策算法侧和仿真平台侧各部署一个功能模块,且仅依赖于少量线程同步原语,在同一进程内解决控制权冲突,保证了高通信效率,性能损失小。

    一种智能汽车连续时间最优决控模型构建及求解方法

    公开(公告)号:CN116011123A

    公开(公告)日:2023-04-25

    申请号:CN202310154088.1

    申请日:2023-02-23

    Applicant: 清华大学

    Abstract: 本公开提供的智能汽车连续时间最优决控模型构建及求解方法,包括:构建智能汽车连续时间最优决控模型,以自车的终端状态性能函数和从初始时刻至终端时刻的有限时域内的效用函数的连续时间积分作为目标函数,效用函数用于表达自车的综合性能,以智能汽车的连续时间动力学方程作为最优决控模型的运动约束,以参数化最优策略作为最优决控模型的输出;对最优决控模型进行迭代求解,每次迭代中,首先从初始时刻至终端时刻前向求解终端时刻的自车状态,然后从终端时刻至初始时刻后向求解策略梯度,并以梯度下降的方式更新参数化策略的参数,不断重复上述迭代过程直至参数化策略的参数收敛,得到最优参数化策略。本公开精度高、适用范围广、节省内存。

Patent Agency Ranking