-
公开(公告)号:CN117669984B
公开(公告)日:2024-11-05
申请号:CN202311750332.7
申请日:2023-12-18
申请人: 暨南大学 , 广东云熵科技有限公司
IPC分类号: G06Q10/0631 , G06N5/02 , G06N3/092 , G06F18/241
摘要: 本发明提出了基于数字孪生及知识图谱的强化学习的车间调度方法,包括:建立数据接收与存储结构收集多模态数据,根据多模态数据生成标签和元数据,并利用图模型的连接性预测与现有数据相关的标签和元数据;对生成的标签和元数据进行数据质量评估与过滤,所述数据质量评估是根据数据质量评分进行评估;设计多层次车间状态表示并建立车间数字孪生模型;构建知识图谱和可解释强化学习模型;根据可解释强化学习模型生成决策逻辑和解释决策逻辑;根据决策逻辑和车间数字孪生模型搭建实验环境并评估实验性能。本发明综合性地解决了车间调度的效率、成本和解释性问题。
-
公开(公告)号:CN118627818A
公开(公告)日:2024-09-10
申请号:CN202410763129.1
申请日:2024-06-13
IPC分类号: G06Q10/0631 , G06Q10/0633 , G06Q10/10 , G06N3/092
摘要: 本发明公开了一种退役动力电池的多目标双边拆解线平衡方法及装置,所述方法包括:引入退役动力电池的双边布局的拆解线模式,定义与优先关系、或优先关系来描述退役动力电池的拆解任务之间的约束类型,并在退役动力电池的拆解优先图中融入与优先关系和或优先关系,建立退役动力电池的多目标双边拆解线平衡模型MILP,以从产线配置、经济效益和安全环保三个方面优化影响退役动力电池的双边拆解线平衡的指标;基于强化学习的群体进化算法RLSEA对多目标双边拆解线平衡模型MILP的双边拆解线平衡的指标进行求解,得到退役动力电池的最优的拆解任务分配方案。本发明能够提升退役动力电池拆解的作业效率与灵活性。
-
公开(公告)号:CN118607373A
公开(公告)日:2024-09-06
申请号:CN202410759265.3
申请日:2024-06-13
申请人: 暨南大学
IPC分类号: G06F30/27 , G06N7/01 , G06N7/02 , G06N5/04 , G06F119/02
摘要: 本发明公开了一种退役机电产品拆解工序的失效风险评估方法、装置及设备,所述方法包括:从退役机电产品的零部件失效层面出发,确定退役机电产品的拆解工序的失效行为表现,并通过引入模糊推理方法,处理多维失效变量进而精确描述退役机电产品的单个拆解工序的失效状态;利用改进离散萤火虫算法优化用于反映退役机电产品的失效拆解工序间因果关系的贝叶斯网络拓扑结构;使用期望最大参数估计方法来估计贝叶斯网络拓扑结构每个节点的贝叶斯网络参数,以估计退役机电产品的各个拆解工序的失效条件概率。本发明能够准确识别退役机电产品拆解过程中潜在的拆解工序的关联失效风险。
-
公开(公告)号:CN116385970B
公开(公告)日:2024-05-28
申请号:CN202310367750.1
申请日:2023-04-07
申请人: 暨南大学
IPC分类号: G06V20/52 , G06V10/40 , G06V10/62 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0442 , G06N3/0455 , G06N3/047 , G06N3/048 , G06N3/092 , H04N7/18
摘要: 本发明涉及用于数据处理方法技术领域,具体涉及一种基于时空序列数据的人流聚集预测模型;该模型基于时间序列的深度学习方法,以处理时间序列数据的特点,以便更准确地预测不同地点、不同时间的人流量。该方法将考虑时空信息对人流量预测的影响,使得模型能够捕捉到更精细的人流变化趋势。
-
公开(公告)号:CN117151425B
公开(公告)日:2024-04-26
申请号:CN202311364387.4
申请日:2023-10-20
申请人: 暨南大学
IPC分类号: G06Q10/0631 , G06N20/00 , G06Q10/30 , G06Q50/04 , G06Q50/26
摘要: 本发明提供一种基于RQL算法的选择拆卸规划方法及系统,获取待拆卸产品的数据集,结合Q‑learning算法和Rollout策略迭代采样待拆卸产品的数据集,得到待拆卸产品的优选拆卸序列,本申请的RQL(Rollout‑Q‑learning)算法是基于Rollout策略优化了Q‑learning算法在迭代过程中的动作选择,在每个决策阶段使用Rollout策略对每个可行动作进行有限步数的模拟采样之后,选择在有限步数内估计价值最大的可行动作,从而使Q‑learning算法具备更强的全局搜索能力,最终得到优选拆卸序列,相对于传统的Q‑learning算法,RQL(Rollout‑Q‑learning)算法在拆卸序列规划上有很大的性能提升,同时能够提高拆卸流程的回收效益,尽可能减少EoL产品对环境造成的危害。
-
公开(公告)号:CN117024168B
公开(公告)日:2024-04-05
申请号:CN202311037838.3
申请日:2023-08-16
申请人: 内蒙古工业大学 , 内蒙古科学技术研究院 , 暨南大学
IPC分类号: C04B37/00
摘要: 本发明属于陶瓷用连接材料技术领域,具体涉及一种利用SiO2粉末制备LaCrO3连接材料的方法。其中SiO2粉末与LaCrO3陶瓷高温下发生界面反应,生成牢固的反应接头。利用放电等离子烧结技术,采用100~300μm厚的SiO2薄片胚体在1250~1550℃下成功连接LaCrO3陶瓷,在1450℃时具有最高连接强度29.3MPa。
-
公开(公告)号:CN116611635B
公开(公告)日:2024-01-30
申请号:CN202310443604.2
申请日:2023-04-23
申请人: 暨南大学
IPC分类号: G06Q10/0631 , G06Q50/26 , G06V20/60 , G06N20/00
摘要: 本发明提出了一种基于车路协同及强化学习的环卫机器人车调度方法及系统,包括:对环卫机器人车通信进行部署,通过基于车载自组织网络的通信网络实现车辆间的数据传输和通信;通过路况感知装置获取路况数据和利用传感器对环卫机器人车周围的环境进行实时感知和数据采集;采用改进的分层双重DQN算法,利用已有的数据,不断优化环卫机器人车的路径规划和调度策略;实时交换环卫机器人车与道路基础设施之间的信息;建立监控管理平台;对系统进行测试和评估。本发明实现了一种基于车路协同及强化学习的环卫机器人车调度系统及方法。本发明的应用可以帮助现代城市提高环卫效率,减少环
-
公开(公告)号:CN117388708A
公开(公告)日:2024-01-12
申请号:CN202311428167.3
申请日:2023-10-30
申请人: 暨南大学 , 内蒙古科学技术研究院
IPC分类号: G01R31/367 , G01R31/374 , G01R31/378 , G01R31/382 , G01R31/396
摘要: 本发明属于动力电池技术领域,具体的说是一种动力电池系统及动力电池系统热失控监测方法,包括动力电池服役模型精准构建端、动力电池服役数据处理研究端与动力电池循环老化衰退端;所述动力电池服役模型精准构建端包括动力电池多尺度映像模型构建模块与动力电池多尺度数字孪生模块;动力电池服役周期数字孪生建模理论,揭示动力电池循环老化衰退过程中多物理场参数动态演变与耦合作用机制,阐明多影响因素耦合作用下动力电池循环老化衰退机理;探究单体不一致性作用下的动力电池多尺度性能衰退规律,形成一套面向动力电池服役周期的主动再制造时域决策方法与理论,以实现动力电池再制造生产效益最大化。
-
公开(公告)号:CN117352885A
公开(公告)日:2024-01-05
申请号:CN202311489415.5
申请日:2023-11-09
申请人: 暨南大学 , 内蒙古科学技术研究院
IPC分类号: H01M10/48 , H01M10/613 , H01M10/625 , H01M10/663 , H01M10/6563 , H01M10/6568 , H01M10/6554
摘要: 本发明属于动力电池技术领域,具体的说是一种动力电池热流泄放装置及动力电池热流泄放方法,包括以下制备步骤:通过温度检测装置进行温度监测,当电池的温度超过指定数值后,温度检测装置将信息传递给控制端,控制端启动冷却箱进行降温;通过液泵的运作将冷却箱内部的冷却液抽入排液管内,动力电池体的内部安装有吸热片,吸热片的顶端连接有散热片,吸热片可以吸收动力电池体内部的热量传递给散热片,散热片会将动力电池体的热量侧端给循环冷却管,排液管内部的冷却液会进入循环冷却管内部流动,冷却液的流动会将散热片上的热量带走,从而对动力电池体进行散热处理,提高动力电池体的散热效果,保证动力电池体的正常运作环境。
-
公开(公告)号:CN116611635A
公开(公告)日:2023-08-18
申请号:CN202310443604.2
申请日:2023-04-23
申请人: 暨南大学
IPC分类号: G06Q10/0631 , G06Q50/26 , G06V20/60 , G06N20/00
摘要: 本发明提出了一种基于车路协同及强化学习的环卫机器人车调度方法及系统,包括:对环卫机器人车通信进行部署,通过基于车载自组织网络的通信网络实现车辆间的数据传输和通信;通过路况感知装置获取路况数据和利用传感器对环卫机器人车周围的环境进行实时感知和数据采集;采用改进的分层双重DQN算法,利用已有的数据,不断优化环卫机器人车的路径规划和调度策略;实时交换环卫机器人车与道路基础设施之间的信息;建立监控管理平台;对系统进行测试和评估。本发明实现了一种基于车路协同及强化学习的环卫机器人车调度系统及方法。本发明的应用可以帮助现代城市提高环卫效率,减少环境污染,降低人力成本,同时提高城市居民的生活品质。
-
-
-
-
-
-
-
-
-