基于数字孪生及知识图谱的强化学习的车间调度方法
摘要:
本发明提出了基于数字孪生及知识图谱的强化学习的车间调度方法,包括:建立数据接收与存储结构收集多模态数据,根据多模态数据生成标签和元数据,并利用图模型的连接性预测与现有数据相关的标签和元数据;对生成的标签和元数据进行数据质量评估与过滤,所述数据质量评估是根据数据质量评分进行评估;设计多层次车间状态表示并建立车间数字孪生模型;构建知识图谱和可解释强化学习模型;根据可解释强化学习模型生成决策逻辑和解释决策逻辑;根据决策逻辑和车间数字孪生模型搭建实验环境并评估实验性能。本发明综合性地解决了车间调度的效率、成本和解释性问题。
0/0