-
公开(公告)号:CN114487125B
公开(公告)日:2023-08-11
申请号:CN202210064568.4
申请日:2022-01-20
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学 , 中国平煤神马控股集团有限公司
Abstract: 本发明公开了一种用于确定煤体各向异性的三维监测综合方法,采用现场探测和实验室测试相结合的方式,在实验室测试方面借助低场核磁共振技术、应力孔渗测试方法和三向纵波测试方法对不同深度煤芯的孔隙结构、应力、渗透率敏感性进行测试并获取对应数据;在现场探测方面通过钻孔窥视仪获取对不同深度钻孔壁面上的层理或弱面结构位置及周向分布数据,并通过特定的穿层钻孔位置布设及超声波收发系统的探测方式及位置布设,从而能获得探测钻孔间不同深度煤体基质信息,然后上述进行现场探测数据和实验室测试获得数据结果通过重叠数据筛选、异常数据剔除及综合数据反演后,计算得出煤层不同深度位置的非均质性系数,最终获得煤层各向异性的评估准则。
-
公开(公告)号:CN114487125A
公开(公告)日:2022-05-13
申请号:CN202210064568.4
申请日:2022-01-20
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学 , 中国平煤神马能源化工集团有限责任公司
Abstract: 本发明公开了一种用于确定煤体各向异性的三维监测综合方法,采用现场探测和实验室测试相结合的方式,在实验室测试方面借助低场核磁共振技术、应力孔渗测试方法和三向纵波测试方法对不同深度煤芯的孔隙结构、应力、渗透率敏感性进行测试并获取对应数据;在现场探测方面通过钻孔窥视仪获取对不同深度钻孔壁面上的层理或弱面结构位置及周向分布数据,并通过特定的穿层钻孔位置布设及超声波收发系统的探测方式及位置布设,从而能获得探测钻孔间不同深度煤体基质信息,然后上述进行现场探测数据和实验室测试获得数据结果通过重叠数据筛选、异常数据剔除及综合数据反演后,计算得出煤层不同深度位置的非均质性系数,最终获得煤层各向异性的评估准则。
-
公开(公告)号:CN116906108A
公开(公告)日:2023-10-20
申请号:CN202310630498.9
申请日:2023-05-31
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学
Abstract: 本发明公开了一种热烟气驱替煤层甲烷水平多向闭环抽采的方法,先采用CH4燃爆压裂技术在各个水平钻井原位协同燃爆反应产生气体冲击压裂水平钻井周围煤层形成裂缝网络,然后向各个水平钻井注入的热烟气由于自身较高的温度可促进煤体CH4气体的解吸,且热烟气中CO2、SO2、NO2因竞争吸附优势可大量置换出大跨度煤层吸附的CH4气体并进行闭环利用,在实现热烟气封存的同时提高煤层甲烷开采效率。另外水平监测井中的集成式多参数监测装置能根据当前获取的水平钻井参数变化调整各水平钻井的燃爆气体注入参数、热烟气注入参数,从而对各水平钻井的气体注入参数进行独立动态精准调控,最大化提高大跨度煤层各区域甲烷燃爆压裂、热烟气封存和CH4抽采效率。
-
公开(公告)号:CN119720842A
公开(公告)日:2025-03-28
申请号:CN202411778536.6
申请日:2024-12-05
Applicant: 中国矿业大学
IPC: G06F30/28 , E21B43/267 , G06F30/23 , G06T17/00 , G06F113/08 , G06F119/14 , G06F111/10
Abstract: 本发明公开了一种支撑剂运移及裂隙支撑性的数值模拟方法,通过建立模型进行数值模拟的方式,综合考虑了支撑剂运移特征及其对裂隙压缩性的影响,首先基于离散元与计算流体力学耦合的方法,获取给定条件下支撑剂在裂隙内运移特点和分布特征,然后根据支撑剂在裂隙内的分布结果,进一步基于离散元与有限差分耦合方案建立含支撑剂裂隙岩体模型,开展应力作用下支撑剂对裂隙支撑性研究。故本发明克服了目前研究中将支撑剂运移与支撑剂应力压缩割裂研究的弊端,大大提高支撑剂运移与裂隙支撑研究过程的系统性、综合性和可靠性,为后续水力压裂注入支撑剂提供数据支撑。
-
公开(公告)号:CN117285915A
公开(公告)日:2023-12-26
申请号:CN202311237813.8
申请日:2023-09-25
Applicant: 中国矿业大学 , 江苏铎安科技有限责任公司
Abstract: 本发明公开了一种黏弹性可修复乳液封孔材料及其智能动态封孔工艺,其由柔性、较高交联度第一网络聚合物,低交联度的第二网络聚合物,两者混合叠加形成双网络凝胶结构,并添加纳米粒子从而增强双网络凝胶结构的强度和韧性;并通过增黏剂调节封孔材料的黏度;智能动态封孔工艺通过封堵囊袋进行初步封孔,然后利用黏弹性可修复乳液的特性进行二次封孔,在圆盘形缝槽内形成用于钻孔封堵的圆形帷幕保证封孔效果;在后续瓦斯抽采过程中,根据瓦斯抽采情况,利用黏弹性可修复乳液封孔材料的特性,继续进行动态封孔过程,能恢复封孔效果,最终保证瓦斯抽采的效率。
-
公开(公告)号:CN116591610A
公开(公告)日:2023-08-15
申请号:CN202310562128.6
申请日:2023-05-18
Applicant: 中国矿业大学
Abstract: 本发明公开了一种高突煤层井上下联合防突辅助石门揭煤系统及方法,该系统包括地面井掏煤扩孔子系统,地面井掏煤扩孔子系统包括若干钻井平台,所述钻井平台之间通过管路连通,所述管路上还并联接入有供液系统、供水系统以及煤渣提升分离子系统;本系统及方法克服了石门揭煤过程中深部煤层瓦斯压力大含量高难以直接钻孔预抽瓦斯的问题,提高了煤层的渗透率,实现了远程消除深部煤层煤与瓦斯突出危险性,保障了深部煤层的安全高效石门揭煤。
-
公开(公告)号:CN116498285A
公开(公告)日:2023-07-28
申请号:CN202310630504.0
申请日:2023-05-31
Applicant: 中国矿业大学 , 江苏铎安科技有限责任公司
Abstract: 本发明公开了一种热烟气驱替叠置煤层甲烷抽采及闭环固碳的方法,先采用CH4燃爆压裂技术在各个煤层段原位协同燃爆反应产生气体冲击压裂煤层段形成裂缝网络,然后向各个煤层段注入的热烟气由于自身较高的温度可促进煤体CH4气体的解吸,且热烟气中CO2、SO2、NO2因竞争吸附优势可大量置换出叠置煤层吸附的CH4气体并闭环利用,在实现热烟气封存的同时提高煤层甲烷开采效率。另外建立的多源监测数据反演及智能调控系统能根据当前不同煤层段的物性参数变化设计符合各煤层的最佳燃爆气体注入参数、最佳热烟气注入参数,从而对各煤层段的气体注入参数进行分层式动态精准调控,最大化提高叠置煤层的各煤层段甲烷燃爆压裂、热烟气封存和CH4抽采效率。
-
公开(公告)号:CN114778405A
公开(公告)日:2022-07-22
申请号:CN202210327692.5
申请日:2022-03-30
Applicant: 中国矿业大学
Abstract: 本发明公开了一种煤的全孔径分布测试方法,通过FIB‑SEM重构模型、蒙特卡罗随机游走算法模拟T2谱图、核磁共振测试T2谱图和低温N2吸附孔径分布曲线相结合进行分析,对煤样中渗流孔和吸附孔的形状进行分类,分别确定两种类型孔隙的几何形状因子和表面弛豫率,然后根据吸附孔和渗流孔各自的表面弛豫率和几何形状因子,得出该煤样的吸附孔分布和渗流孔分布,进而组成煤样的全孔径分布图,从而精准表征煤的孔隙结构;本发明弥补了现有核磁共振测试过程中,使用单一孔隙几何形状因子和表面弛豫率,不能精确求解样品孔径分布的缺陷(即由于煤中不同孔径范围的孔隙表面弛豫率不同会使得对应范围的孔径分布也不同),有效提高了煤样全孔径分布测试的准确性。
-
公开(公告)号:CN114544461A
公开(公告)日:2022-05-27
申请号:CN202210136463.5
申请日:2022-02-15
Applicant: 中国矿业大学
IPC: G01N15/08
Abstract: 本发明公开了一种超临界CO2封存与损伤监测试验系统及方法,包括实现CO2由气态向超临界相态转变的超临界CO2制备系统、模拟深部原位储层温压环境的三轴岩心夹持器系统、回压系统、渗透率测试系统、调节管线与夹持器温度的温度控制系统、调节注入压力与夹持器轴围压的压力控制系统、真空系统、监测封存前后试样损伤程度的数据监测与采集系统与尾气处理系统;超临界CO2经恒速恒压泵注入夹持器内的试样中,通过渗透率测试系统与数据监测与采集系统从多角度实时监测超临界CO2不同封存条件下试样损伤的时空演变过程,并基于监测结果评价封存的安全性;本发明能模拟超临界CO2封存对储层的损伤作用,研究封存损伤机制,确定封存最优参数,获得封存最佳效果。
-
公开(公告)号:CN119000771A
公开(公告)日:2024-11-22
申请号:CN202411055294.8
申请日:2024-08-02
Applicant: 中国矿业大学
IPC: G01N24/08
Abstract: 本发明公开了一种基于煤屑多源信息的煤层三维孔渗时空反演预测方法,充分利用煤矿井下大量的打钻工序,获取不同钻孔不同孔深段煤层的孔隙结构特征,不仅可实现煤矿井下常规的探测及卸压效果,而且可利用排出煤屑结构信息表征煤层结构,实现了钻屑的测试功能扩大化,使得钻孔具有一孔多用的效果;接着利用插值拟合方法对多个钻孔沿程不同孔深段的基础赋存参数进行拟合,实现了煤层不同层位的孔隙空间分布规律可视化,同时根据各个穿层钻孔的瓦斯抽采数据得出煤层瓦斯含量衰减规律,最后将孔隙空间分布与瓦斯含量衰减规律相结合进行数据分析,从而对煤层结构内瓦斯含量时程变化过程进行预测,为优化瓦斯智能抽采提供依据。
-
-
-
-
-
-
-
-
-