-
公开(公告)号:CN118330756A
公开(公告)日:2024-07-12
申请号:CN202410479881.3
申请日:2024-04-22
申请人: 中国石油大学(华东) , 中国矿业大学
摘要: 本发明公开一种基于拟方波函数的阵列感应测井反演及原状地层电阻率获取方法,该方法包括以下几个步骤:(1)获取阵列感应测井得到的不同径向探测深度的电阻率数据;(2)根据电阻率与探测深度的关系,应用拟方波函数描述地层径向电阻率近似分布;(3)采用Markov Chain Monte Carlo方法对拟方波函数进行随机反演,得到第一次优化解;(4)将第一次优化解作为初值,采用带非负约束的Levenberg‑Marquardt算法进行二次反演,得到拟方波函数的最终解。(5)根据拟方波函数的定义,输出原状地层电阻率。本发明能够快速的得到原状地层电阻率,有效校正钻井液侵入对阵列感应测井电阻率的影响,在测井储层评价和流体识别领域具有重要作用。
-
公开(公告)号:CN116908022A
公开(公告)日:2023-10-20
申请号:CN202310887106.7
申请日:2023-07-19
申请人: 中国矿业大学
摘要: 本发明公开了一种煤矿井下突出参数一体化快速测量装置及方法,当测量煤的坚固性系数时,破碎及筛分装置对待测煤样进行设定次数的冲击破碎过程;完成冲击破碎后对煤粉进行筛分,符合要求的煤粉通过冲击筛板掉落至计量筒内,获取每组煤粉高度,根据设定阈值筛选出有效数据,最后将有效数据反馈给数据处理中心得出煤的坚固性系数;当测量煤的瓦斯含量时,仍然采用该装置通过瓦斯流量监测装置测试煤样自然解吸瓦斯含量和煤样粉碎后解吸瓦斯含量,最后数据处理中心分析处理后得出煤的瓦斯含量。整个过程全部在井下实现,并且煤的坚固性系数和瓦斯含量测定过程均采用同一个装置即可实现,最终实现快速、精准地测定煤的坚固性系数和瓦斯含量。
-
公开(公告)号:CN116696451A
公开(公告)日:2023-09-05
申请号:CN202310729241.9
申请日:2023-06-19
申请人: 中国矿业大学 , 江苏铎安科技有限责任公司
发明人: 翟成 , 郑仰峰 , 余旭 , 杨威 , 张海宾 , 徐吉钊 , 刘厅 , 孙勇 , 丛钰洲 , 唐伟 , 李宇杰 , 朱薪宇 , 黄婷 , 王宇 , 陈爱坤 , 徐鹤翔 , 吴西卓 , 刘晓琴 , 魏星宇 , 黄涛
IPC分类号: E21F7/00 , E21F17/103 , E21F17/12 , E21F17/18
摘要: 本发明公开了一种高瓦斯煤层封闭式工作面煤气智能开采方法,将高瓦斯采煤工作面及采空区全封闭形成密封空间,进而取消通风系统及瓦斯抽采钻孔,由于无外界空气进入,并通过抽取使其内部氧气降低至接近零,进而使采煤工作面在后续采煤过程中处于隔绝氧气的状态,因此从根本上消除了煤炭自燃以及瓦斯煤尘爆炸的风险,从而大大加快了采掘接替速度,并减少了矿井的施工成本。另外在密封空间内进行后续采煤时,解吸的瓦斯直接排放至采煤工作面及密封空间内,此时通过瓦斯抽采泵站抽采瓦斯,大大提高了瓦斯利用率;最终实现对整个高瓦斯煤层的瓦斯抽采,且在抽采的同时能进行煤炭开采,不仅保证瓦斯抽采效率,还保障了煤炭开采量。
-
公开(公告)号:CN113359200B
公开(公告)日:2023-06-02
申请号:CN202110710114.5
申请日:2021-06-25
申请人: 中国矿业大学
摘要: 本发明公开了一种基于核磁传感器的核废料掩埋场水体监测系统及方法,适用于核废料掩埋场使用。其包括核磁共振测量系统,井下控制中心与地面综合管控中心。在地面综合管控中心远程操控核磁共振测量系统,对核废料掩埋场不同位置处的水分布情况进行实时监测,通过井下控制中心汇总所测数据,再通过光纤传输至地面综合管控中心,对数据进行分析与处理,根据结果判断是否有水侵入,并对异常情况做出预警,制定应对措施,保护核废料掩埋场的持久性安全。该监测系统具有简单、方便和智能的特点。
-
公开(公告)号:CN114719455B
公开(公告)日:2023-04-07
申请号:CN202210491082.9
申请日:2022-05-07
申请人: 中国矿业大学
摘要: 本发明公开了一种基于不同相态CO2的定向层位式地热强化开采方法,从地面向干热岩储层钻设竖井,在竖井同一侧依次钻设第一水平钻井、第二水平钻井和第三水平钻井,并在第二和第三水平钻井内均布设定向孔洞,其在后续CO2流体相变致裂时起到导向作用,接着布设多相态CO2地热开采系统。这种单井“注入‑提热”过程可有效提高地热开采效率;利用液态CO2注入地热层时受热后相变膨胀致裂增加体积改造范围,此时CO2气体变成处于超临界状态的CO2流体,使超临界状态的CO2流体与地热层换热,最后超临界状态的CO2流体进入换热器内进行换热降温,使其提取的热量用于发电装置进行发电,从而有效保证地热资源开采后的换热效率,提高地热资源的整体开采效率。
-
公开(公告)号:CN114412418B
公开(公告)日:2022-09-27
申请号:CN202210072377.2
申请日:2022-01-21
申请人: 中国矿业大学
摘要: 本发明公开了一种用于叠置煤层气藏多向闭环抽采煤层气的方法,先在叠置煤层气藏形成水平井和四个抽采井;在水平井和各个抽采井布设闭环抽采系统;然后将气化剂依次注入水平井的四个水平段,通过气化反应会产生大量辐射热和CO2气体,产生裂隙网络,裂隙网络将上煤层、岩层和下煤层进行连通,并在煤体升温降低CH4气体吸附性和CO2气体竞争吸附的双重作用下,使得上煤层和下煤层内的CH4气体快速解吸;气化反应后的CO2气体经过分离后与发电产生的CO2气体可再次注入上煤层中,再次通过CO2吸附性能促进CH4气体的驱替,整个工作流程形成一个闭环,同时开采出的CH4气体通过CH4发电机组转化成电能进行的后续利用,实现了煤层气资源的高效开采与利用。
-
公开(公告)号:CN114412419B
公开(公告)日:2022-09-09
申请号:CN202210072385.7
申请日:2022-01-21
申请人: 中国矿业大学
摘要: 本发明公开了一种叠置煤层气藏高效闭环抽采的方法,先在叠置煤层气藏形成水平井和抽采井;在水平井和抽采井布设闭环抽采系统;然后将气化剂注入水平井的水平段,通过气化反应会产生大量辐射热和CO2气体,产生裂隙网络,裂隙网络将上煤层、岩层和下煤层进行连通,并在煤体升温降低CH4气体吸附性和CO2气体竞争吸附的双重作用下,使得上煤层和下煤层内的CH4气体快速解吸;气化反应后的CO2气体经过分离后与发电产生的CO2气体可再次注入上煤层中,再次通过CO2吸附性能促进CH4气体的驱替,整个工作流程形成一个闭环,同时开采出的CH4气体通过CH4发电机组转化成电能进行的后续利用,实现了煤层气资源的高效开采与利用。
-
公开(公告)号:CN113236366B
公开(公告)日:2022-06-07
申请号:CN202110711040.7
申请日:2021-06-25
申请人: 中国矿业大学
摘要: 本发明公开了一种水害风险低场核磁共振立体监测方法,适用于城市地下空间或隧道施工过程中突水、突泥等水害预警及隧道开通后运行中位移沉降及可见风险的全生命周期三维立体监测与预警。施工阶段首先在地下空间或隧道施工掌子面钻取不同角度的钻孔并获得岩心,得到围岩的岩性并判断前方有无构造带;向钻孔内送入低场核磁共振微缩传感器进行测量,利用获得的核磁水信号及围岩岩性,构建诱发水害的预警阈值和安全评估准则。地下空间或隧道施工完成后,布置四周钻孔并预埋低场核磁共振微缩传感器,配合巡检摄像头及光纤应变传感器,利用5G信号对四周围岩内水的空间分布、位移沉降及可见风险进行实时监测,有效保障了隧道的安全运行。
-
公开(公告)号:CN114412448A
公开(公告)日:2022-04-29
申请号:CN202210065578.X
申请日:2022-01-20
申请人: 中国矿业大学
IPC分类号: E21B47/01 , E21B47/092 , E21F7/00 , E21F17/18
摘要: 本发明公开了一种基于核磁共振的煤储层结构测试随钻探头及测试方法,在钻孔过程中实时通过核磁探头对钻孔周围的煤体进行核磁探测,完成钻孔施工后即实现一次核磁探测过程,然后该钻孔能用于后续瓦斯抽采,这种一次钻孔具有多种作用的方式,一方面减少额外钻设多个钻孔;另一方面可通过核磁测试手段对钻进和退钻过程中分别进行核磁探测,实现实时原位煤层的无损监测,并大幅提升数据有效性及可信度;最后,分别将钻进时获得的多个核磁弛豫信息形成集合,及退钻时获得的多个核磁弛豫信息形成集合,通过设定的标准进行判断,最终能确定钻孔周围的煤层孔隙结构是否因钻孔卸压发生变化,进而根据变化情况及时采取相应措施,保证后续煤层开采的安全性。
-
公开(公告)号:CN114412419A
公开(公告)日:2022-04-29
申请号:CN202210072385.7
申请日:2022-01-21
申请人: 中国矿业大学
摘要: 本发明公开了一种叠置煤层气藏高效闭环抽采的方法,先在叠置煤层气藏形成水平井和抽采井;在水平井和抽采井布设闭环抽采系统;然后将气化剂注入水平井的水平段,通过气化反应会产生大量辐射热和CO2气体,产生裂隙网络,裂隙网络将上煤层、岩层和下煤层进行连通,并在煤体升温降低CH4气体吸附性和CO2气体竞争吸附的双重作用下,使得上煤层和下煤层内的CH4气体快速解吸;气化反应后的CO2气体经过分离后与发电产生的CO2气体可再次注入上煤层中,再次通过CO2吸附性能促进CH4气体的驱替,整个工作流程形成一个闭环,同时开采出的CH4气体通过CH4发电机组转化成电能进行的后续利用,实现了煤层气资源的高效开采与利用。
-
-
-
-
-
-
-
-
-