-
公开(公告)号:CN114183114A
公开(公告)日:2022-03-15
申请号:CN202111511992.0
申请日:2021-12-07
申请人: 中国矿业大学 , 江苏拓海煤矿钻探机械有限公司
摘要: 本发明公开了一种水力冲孔造穴协同蒸汽注入强化瓦斯抽采方法,先向煤层内打设穿层钻孔,并向钻孔内注入高压水进行水力冲孔,从而在钻孔内形成冲孔穴,并且冲孔穴周围形成数条裂缝,然后通过气渣分离器将冲孔穴内的残渣、废水排出并进行瓦斯抽采;瓦斯抽采一定时间后,再向冲孔穴内注入高温高压蒸汽,高温高压蒸汽进入冲孔穴内后与煤层进行热交换,蒸汽进入煤层的裂缝内进一步施加压力,使煤层裂缝在受到高温和高压力的作用后进一步扩展发育实现二次压裂;最终在高温水力冲孔和高温高压蒸汽的二次压裂,及降低煤层吸附性的多重作用下,实现对瓦斯抽采的增产。本发明能有效提高煤层瓦斯的抽采效果,并持续较长时间,同时降低施工钻孔的工作量。
-
公开(公告)号:CN114183114B
公开(公告)日:2022-11-08
申请号:CN202111511992.0
申请日:2021-12-07
申请人: 中国矿业大学 , 江苏拓海煤矿钻探机械有限公司
摘要: 本发明公开了一种水力冲孔造穴协同蒸汽注入强化瓦斯抽采方法,先向煤层内打设穿层钻孔,并向钻孔内注入高压水进行水力冲孔,从而在钻孔内形成冲孔穴,并且冲孔穴周围形成数条裂缝,然后通过气渣分离器将冲孔穴内的残渣、废水排出并进行瓦斯抽采;瓦斯抽采一定时间后,再向冲孔穴内注入高温高压蒸汽,高温高压蒸汽进入冲孔穴内后与煤层进行热交换,蒸汽进入煤层的裂缝内进一步施加压力,使煤层裂缝在受到高温和高压力的作用后进一步扩展发育实现二次压裂;最终在高温水力冲孔和高温高压蒸汽的二次压裂,及降低煤层吸附性的多重作用下,实现对瓦斯抽采的增产。本发明能有效提高煤层瓦斯的抽采效果,并持续较长时间,同时降低施工钻孔的工作量。
-
公开(公告)号:CN113006867A
公开(公告)日:2021-06-22
申请号:CN202110459430.X
申请日:2021-04-27
申请人: 中国矿业大学 , 陕西陕煤铜川矿业有限公司陈家山煤矿 , 江苏拓海煤矿钻探机械有限公司
摘要: 一种高瓦斯低洼孤岛工作面煤层采前多灾害联合防治方法,属瓦斯治理技术领域。通过在本煤层中间打一条疏放水巷道作为多灾害防治措施集中地,向两侧采空区积水区域打疏放水钻孔将积水疏放达标;同时在疏放水巷道端头、两侧钻场和两侧煤壁分别施工掘进前预抽瓦斯钻孔、本煤层瓦斯预抽钻孔和本煤层顺层瓦斯预抽钻孔将本煤层瓦斯抽采达标;之后加速掘进拟掘进、回风巷道,最后在疏放水巷道采用后退分段式充填方法,砌筑充填密闭墙,用充填泵充填疏放水巷道,消减自燃发火和冲击地压的风险,能使灾害防治措施集中化、简便化,在降低灾害防治成本的同时加快煤层开采周期,从而大大提高煤矿经济效益,对于高瓦斯低洼孤岛工作面煤层安全开采意义重大。
-
公开(公告)号:CN113006867B
公开(公告)日:2021-12-21
申请号:CN202110459430.X
申请日:2021-04-27
申请人: 中国矿业大学 , 陕西陕煤铜川矿业有限公司陈家山煤矿 , 江苏拓海煤矿钻探机械有限公司
摘要: 一种高瓦斯低洼孤岛工作面煤层采前多灾害联合防治方法,属瓦斯治理技术领域。通过在本煤层中间打一条疏放水巷道作为多灾害防治措施集中地,向两侧采空区积水区域打疏放水钻孔将积水疏放达标;同时在疏放水巷道端头、两侧钻场和两侧煤壁分别施工掘进前预抽瓦斯钻孔、本煤层瓦斯预抽钻孔和本煤层顺层瓦斯预抽钻孔将本煤层瓦斯抽采达标;之后加速掘进拟掘进、回风巷道,最后在疏放水巷道采用后退分段式充填方法,砌筑充填密闭墙,用充填泵充填疏放水巷道,消减自燃发火和冲击地压的风险,能使灾害防治措施集中化、简便化,在降低灾害防治成本的同时加快煤层开采周期,从而大大提高煤矿经济效益,对于高瓦斯低洼孤岛工作面煤层安全开采意义重大。
-
公开(公告)号:CN116359041A
公开(公告)日:2023-06-30
申请号:CN202310408264.X
申请日:2023-04-17
申请人: 中国矿业大学 , 江苏拓海煤矿钻探机械有限公司
摘要: 本发明公开了一种人工裂缝试样冲击剪切渗透率测试系统及方法,包括围压加载系统,冲击剪切系统和渗透率测试系统,其中围压加载系统不仅能对试样施加不同的围压,同时其能使冲击杆和透射杆分别与试样夹持器之间压紧固定密封,为后续测定渗透率时进行密封;冲击剪切系统用于在对试样进行冲击剪切时施加冲击力,进而通过第一剪切头和第二剪切头各自非对称设置的突出部实现对试样的冲击剪切错动,完成试验后试样内部形成自支撑结构对产生的裂隙进行支撑;最后对冲击剪切前后的渗透率进行对比分析,通过改变参数进行多次试验从而能测定不同试样围压、不同冲击压力及不同渗流气压下对冲击剪切前后的渗透率影响情况,为后续现场实施提供数据支撑。
-
公开(公告)号:CN115163000B
公开(公告)日:2023-10-27
申请号:CN202210829420.5
申请日:2022-07-15
申请人: 中国矿业大学
摘要: 本发明公开了一种基于压风动力的打钻防喷孔装置及方法,在打钻过程中兼具快速排渣、清理粉尘及瓦斯快速抽采的功能,通过防喷主体中甲烷浓度检测仪监测瓦斯浓度,从而能对钻孔内是否发生喷孔现象做出识别和判断,进而向工作人员发出声光警报,接着工作人员能通过阀门启停按钮组实现气动蝶阀一和气动蝶阀二的快速开启和关闭,通过这种方式能使防喷主体从除尘及排渣模式快速切换至瓦斯抽采模式,在短时间内进行瓦斯的密闭抽采,解决了传统防喷装置机械式手动阀门启停过晚而造成的瓦斯抽采不及时,进而大量涌入采掘工作面而造成瓦斯超限的难题。此外,通过两个气动蝶阀的相互切换控制,关闭除尘管路阀门对整个防喷装置进行密封,提高了瓦斯抽采浓度。
-
公开(公告)号:CN116908022A
公开(公告)日:2023-10-20
申请号:CN202310887106.7
申请日:2023-07-19
申请人: 中国矿业大学
摘要: 本发明公开了一种煤矿井下突出参数一体化快速测量装置及方法,当测量煤的坚固性系数时,破碎及筛分装置对待测煤样进行设定次数的冲击破碎过程;完成冲击破碎后对煤粉进行筛分,符合要求的煤粉通过冲击筛板掉落至计量筒内,获取每组煤粉高度,根据设定阈值筛选出有效数据,最后将有效数据反馈给数据处理中心得出煤的坚固性系数;当测量煤的瓦斯含量时,仍然采用该装置通过瓦斯流量监测装置测试煤样自然解吸瓦斯含量和煤样粉碎后解吸瓦斯含量,最后数据处理中心分析处理后得出煤的瓦斯含量。整个过程全部在井下实现,并且煤的坚固性系数和瓦斯含量测定过程均采用同一个装置即可实现,最终实现快速、精准地测定煤的坚固性系数和瓦斯含量。
-
公开(公告)号:CN116696451A
公开(公告)日:2023-09-05
申请号:CN202310729241.9
申请日:2023-06-19
申请人: 中国矿业大学 , 江苏铎安科技有限责任公司
发明人: 翟成 , 郑仰峰 , 余旭 , 杨威 , 张海宾 , 徐吉钊 , 刘厅 , 孙勇 , 丛钰洲 , 唐伟 , 李宇杰 , 朱薪宇 , 黄婷 , 王宇 , 陈爱坤 , 徐鹤翔 , 吴西卓 , 刘晓琴 , 魏星宇 , 黄涛
IPC分类号: E21F7/00 , E21F17/103 , E21F17/12 , E21F17/18
摘要: 本发明公开了一种高瓦斯煤层封闭式工作面煤气智能开采方法,将高瓦斯采煤工作面及采空区全封闭形成密封空间,进而取消通风系统及瓦斯抽采钻孔,由于无外界空气进入,并通过抽取使其内部氧气降低至接近零,进而使采煤工作面在后续采煤过程中处于隔绝氧气的状态,因此从根本上消除了煤炭自燃以及瓦斯煤尘爆炸的风险,从而大大加快了采掘接替速度,并减少了矿井的施工成本。另外在密封空间内进行后续采煤时,解吸的瓦斯直接排放至采煤工作面及密封空间内,此时通过瓦斯抽采泵站抽采瓦斯,大大提高了瓦斯利用率;最终实现对整个高瓦斯煤层的瓦斯抽采,且在抽采的同时能进行煤炭开采,不仅保证瓦斯抽采效率,还保障了煤炭开采量。
-
公开(公告)号:CN113359200B
公开(公告)日:2023-06-02
申请号:CN202110710114.5
申请日:2021-06-25
申请人: 中国矿业大学
摘要: 本发明公开了一种基于核磁传感器的核废料掩埋场水体监测系统及方法,适用于核废料掩埋场使用。其包括核磁共振测量系统,井下控制中心与地面综合管控中心。在地面综合管控中心远程操控核磁共振测量系统,对核废料掩埋场不同位置处的水分布情况进行实时监测,通过井下控制中心汇总所测数据,再通过光纤传输至地面综合管控中心,对数据进行分析与处理,根据结果判断是否有水侵入,并对异常情况做出预警,制定应对措施,保护核废料掩埋场的持久性安全。该监测系统具有简单、方便和智能的特点。
-
公开(公告)号:CN114719455B
公开(公告)日:2023-04-07
申请号:CN202210491082.9
申请日:2022-05-07
申请人: 中国矿业大学
摘要: 本发明公开了一种基于不同相态CO2的定向层位式地热强化开采方法,从地面向干热岩储层钻设竖井,在竖井同一侧依次钻设第一水平钻井、第二水平钻井和第三水平钻井,并在第二和第三水平钻井内均布设定向孔洞,其在后续CO2流体相变致裂时起到导向作用,接着布设多相态CO2地热开采系统。这种单井“注入‑提热”过程可有效提高地热开采效率;利用液态CO2注入地热层时受热后相变膨胀致裂增加体积改造范围,此时CO2气体变成处于超临界状态的CO2流体,使超临界状态的CO2流体与地热层换热,最后超临界状态的CO2流体进入换热器内进行换热降温,使其提取的热量用于发电装置进行发电,从而有效保证地热资源开采后的换热效率,提高地热资源的整体开采效率。
-
-
-
-
-
-
-
-
-