-
公开(公告)号:CN119854002A
公开(公告)日:2025-04-18
申请号:CN202510008592.X
申请日:2025-01-03
Applicant: 国家计算机网络与信息安全管理中心 , 烟台中科网络技术研究所
IPC: H04L9/40
Abstract: 本发明涉及网络安全技术领域,尤其涉及一种生成式人工智能交互式测评系统及测评方法,包括交互式测评系统以及与所述交互式测评系统连接的三个交互式内容生成平台,其中:第一交互式内容生成平台用于生成测试用例;第二交互式内容生成平台用于进行结果分析及生成报告;第三交互式内容生成平台用于作为被测平台,生成交互式内容;交互式测评系统包括:数据接收模块、策略管理库、评估管理模块、接口管理模块、任务链管理模块和提示模板库。本发明基于交互式内容生成平台,灵活生成安全测试集/进行结果评定,并开展测评工作,将测评合理进行拆解,充分利用现有的知识/经验集,实现高效、灵活的交互式内容生成安全测试。
-
公开(公告)号:CN119940368A
公开(公告)日:2025-05-06
申请号:CN202510008588.3
申请日:2025-01-03
Applicant: 国家计算机网络与信息安全管理中心 , 烟台中科网络技术研究所
IPC: G06F40/30 , G06F40/194 , G06F40/16 , G06N3/045 , G06N3/0475 , G06N3/042 , G06N3/0464 , G06F18/22 , G06F18/23211
Abstract: 本发明涉及文本数据分析技术领域,尤其涉及一种面向生成式大模型的文本同源性分析方法,包括以下步骤:S1:对面向生成式大模型的文本数据进行预处理后,将文本数据转化为高维语义嵌入向量,引入混合距离度量进行相似度分析;S2:采用基于密度峰值的动态聚类算法进行动态聚类分析,生成初步的同源文本簇,引入多重迭代映射与动态梯度扰动机制进一步分析,得到优化的同源文本簇;S3:将优化的同源文本簇进行多模态融合,利用图结构对融合后的多模态同源文本簇进行分析,应用时间序列分析方法,得到文本的同源性分析与来源追踪结果,本方法能够有效应对生成式大模型生成文本数据语义表达的多样性和复杂性,增强了文本表示的鲁棒性和准确性。
-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国家计算机网络与信息安全管理中心天津分中心
IPC: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
Abstract: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN118349883A
公开(公告)日:2024-07-16
申请号:CN202410345245.1
申请日:2024-03-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F18/214 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06F21/60
Abstract: 本申请提供一种重要数据的识别方法、装置和电子设备,涉及数据处理技术领域和人工智能技术领域。该方法包括:在识别重要数据时,可以先获取待识别数据集,待识别数据集中包括多个数据和各数据的重要度指标;针对各数据,将数据和数据的重要度指标输入至预设的重要数据识别模型中,得到数据对应的重要度得分;再基于各数据对应的重要度得分,从多个数据中识别重要数据,这样基于重要数据识别模型识别重要数据,与现有技术中基于预设重要度规则识别重要数据相比,不仅可以有效地提高重要数据的识别效率,而且提高了识别结果的准确度。
-
公开(公告)号:CN117312864A
公开(公告)日:2023-12-29
申请号:CN202311618449.X
申请日:2023-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06F40/284 , G06N3/08 , G06N3/0455 , G06N3/0475
Abstract: 本发明提供一种基于多模态信息的变形词生成模型的训练方法及装置,涉及语言生成技术领域,方法包括:获取变形词语料库,变形词语料库包括的不同初始样本由多模态信息组成;对变形词语料库中不同初始样本的不同类型的语料信息,采用对应类型的预处理方式分别进行预处理,生成大规模语料库;大规模语料库中每个语料样本包括多个语料信息的权重及特征向量,不同的语料信息的权重用于表征不同的语料信息在对应样本中不同的贡献程度;基于大规模语料库中预设数量的语料样本包括的多个语料信息的权重及特征向量,对初始模型进行训练,得到基于多模态信息的变形词生成模型。本发明能够提高变形词生成的精度和准确率。
-
公开(公告)号:CN118869520A
公开(公告)日:2024-10-29
申请号:CN202311587077.9
申请日:2023-11-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/02 , H04L43/062 , H04L47/70
Abstract: 本发明提供一种基于降噪模型的隧道流量关联方法和装置,其中所述方法包括:获取预建立的网络隧道的多个入口节点流和多个出口节点流;其中,所述网络隧道用于客户端访问对应的网络;确定与每个出口节点流对应的至少一个候选入口节点流,将每个所述出口节点流输入至预训练的降噪模型中,以将出口节点流依次进行网络噪声和混淆噪声去除处理,得到映射入口节点流;分别计算所述映射入口节点流与至少一个候选入口节点流的统计距离,根据所述统计距离对所述候选入口节点流进行筛选,将最小的统计距离对应的候选入口节点流作为与所述出口节点流关联的目标入口节点流;通过不同的编码层负责去除不同类型的噪声,可提高关联结果的精度。
-
公开(公告)号:CN118520929A
公开(公告)日:2024-08-20
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN116644229B
公开(公告)日:2024-01-26
申请号:CN202310545163.7
申请日:2023-05-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F18/214 , G06F18/243
Abstract: 本申请涉及一种推荐信息过度泛娱乐化预测方法、装置及服务器,方法应用于服务器,包括:获取用户个性化推荐场景下的待预测时刻的实时行为数据和第一历史行为数据;对待预测时刻的实时行为数据和第一历史行为数据进行特征提取,获得待输入特征;将待输入特征输入推荐信息过度泛娱乐化预测模型;获取推荐信息过度泛娱乐化预测模型的输出结果,输出结果表征用户待预测时刻是否发生推荐信息过度泛娱乐化。通过上述方式,解决了现在对过度泛娱乐化的信息推荐的预测角度的研究还存在空白的问题。
-
公开(公告)号:CN116644229A
公开(公告)日:2023-08-25
申请号:CN202310545163.7
申请日:2023-05-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F18/214 , G06F18/243
Abstract: 本申请涉及一种推荐信息过度泛娱乐化预测方法、装置及服务器,方法应用于服务器,包括:获取用户个性化推荐场景下的待预测时刻的实时行为数据和第一历史行为数据;对待预测时刻的实时行为数据和第一历史行为数据进行特征提取,获得待输入特征;将待输入特征输入推荐信息过度泛娱乐化预测模型;获取推荐信息过度泛娱乐化预测模型的输出结果,输出结果表征用户待预测时刻是否发生推荐信息过度泛娱乐化。通过上述方式,解决了现在对过度泛娱乐化的信息推荐的预测角度的研究还存在空白的问题。
-
公开(公告)号:CN119885253A
公开(公告)日:2025-04-25
申请号:CN202411818233.2
申请日:2024-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 北京邮电大学
IPC: G06F21/62 , G06F21/60 , G06F18/241 , G06F18/20 , G06N3/08
Abstract: 本申请提供一种数据分类方法、装置、设备及存储介质,该方法包括:获取待处理数据;将所述待处理数据输入数据分类模型中,得到分类数据和所述分类数据的类别;所述数据分类模型为深度学习模型;根据所述分类数据的类别,基于自然语言处理技术和预设识别规则处理所述分类数据,确定敏感信息。本申请实现了对数据的精确分类,并能够识别和处理敏感信息,增强了数据安全性。
-
-
-
-
-
-
-
-
-