-
公开(公告)号:CN115828566A
公开(公告)日:2023-03-21
申请号:CN202211494014.4
申请日:2022-02-22
Applicant: 哈尔滨理工大学
Abstract: 本发明涉及铣削加工技术领域,具体的说是立铣刀铣削加工表面精度分布一致性的工艺设计与验证方法,包括S1、立铣刀铣削侧立面加工误差一致性的设计目标;S2、立铣刀铣削侧立面加工误差一致性的设计变量识别分析方法;S3、立铣刀铣削侧立面加工误差一致性的设计模型;S4、立铣刀铣削侧立面加工误差一致性的设计流程的验证方法。本发明提出的立铣刀铣削侧立面加工误差一致性的设计目标、给出的立铣刀铣削侧立面加工误差一致性的设计变量、提出的立铣刀铣削侧立面加工误差一致性的设计模型和提出的立铣刀铣削侧立面加工误差一致性的设计流程的验证方法,提高加工精度的一致性水平,验证工艺方案的可行性和一致性水平。
-
公开(公告)号:CN112490021B
公开(公告)日:2022-06-14
申请号:CN202011320863.9
申请日:2020-11-23
Applicant: 哈尔滨理工大学
Abstract: 一种钴掺杂氮化钨柔性复合电极材料及其制备方法,它涉及一种超级电容器电极材料及其制备方法。本发明的目的是要解决现有超级电容器电极材料的比电容低,无法满足超级电容器对更高的容量和能量密度的需求的问题。一种钴掺杂氮化钨柔性复合电极材料以碳布作为基底,在碳布表面生长钴掺杂氮化钨。制备方法:一、浸渍;二、水热合成;三、高温氮化,得到钴掺杂氮化钨柔性复合电极材料。优点:具有较好的电容性能,当电流密度为10mA/cm2时,在1mol/L的H2SO4溶液中的比电容达到1744mF/cm2,单电极循环5000次以后,电容值相对于初始值变为112%。本发明制备的钴掺杂氮化钨柔性复合电极材料用于超级电容器电极上。
-
公开(公告)号:CN110222454A
公开(公告)日:2019-09-10
申请号:CN201910516573.2
申请日:2019-06-14
Applicant: 哈尔滨理工大学
IPC: G06F17/50
Abstract: 铣削加工精度一致性的工艺设计方法,属于铣刀技术领域。由于已有技术设计指标不全,目标不明确而无法实现加工表面误差分布精确控制,本发明针对上述问题对铣削工艺设计方法进行改进。本发明增加加工精度评判的评判指标,实现对加工误差分布的精确控制;设计铣削振动试验并提取振动试验数据,对铣削振动进行全程动态检测,使用改进的灰色关联分析算法对铣削振动与加工精度进行分析;通过灰色关联算法对加工表面精度的各项参数随切削行程的动态变化进行分析。本发明的工艺设计方法,优化设计、动态设计、协同设计综合运用,通过加工表面精度一致性的评判方法,对原有的工艺设计方法进行优化,提高加工精度及其一致性水平。
-
公开(公告)号:CN115828566B
公开(公告)日:2023-06-20
申请号:CN202211494014.4
申请日:2022-02-22
Applicant: 哈尔滨理工大学
Abstract: 本发明涉及铣削加工技术领域,具体的说是立铣刀铣削加工表面精度分布一致性的工艺设计与验证方法,包括S1、立铣刀铣削侧立面加工误差一致性的设计目标;S2、立铣刀铣削侧立面加工误差一致性的设计变量识别分析方法;S3、立铣刀铣削侧立面加工误差一致性的设计模型;S4、立铣刀铣削侧立面加工误差一致性的设计流程的验证方法。本发明提出的立铣刀铣削侧立面加工误差一致性的设计目标、给出的立铣刀铣削侧立面加工误差一致性的设计变量、提出的立铣刀铣削侧立面加工误差一致性的设计模型和提出的立铣刀铣削侧立面加工误差一致性的设计流程的验证方法,提高加工精度的一致性水平,验证工艺方案的可行性和一致性水平。
-
公开(公告)号:CN110222454B
公开(公告)日:2022-03-22
申请号:CN201910516573.2
申请日:2019-06-14
Applicant: 哈尔滨理工大学
Abstract: 铣削加工精度一致性的工艺设计方法,属于铣刀技术领域。由于已有技术设计指标不全,目标不明确而无法实现加工表面误差分布精确控制,本发明针对上述问题对铣削工艺设计方法进行改进。本发明增加加工精度评判的评判指标,实现对加工误差分布的精确控制;设计铣削振动试验并提取振动试验数据,对铣削振动进行全程动态检测,使用改进的灰色关联分析算法对铣削振动与加工精度进行分析;通过灰色关联算法对加工表面精度的各项参数随切削行程的动态变化进行分析。本发明的工艺设计方法,优化设计、动态设计、协同设计综合运用,通过加工表面精度一致性的评判方法,对原有的工艺设计方法进行优化,提高加工精度及其一致性水平。
-
公开(公告)号:CN112490021A
公开(公告)日:2021-03-12
申请号:CN202011320863.9
申请日:2020-11-23
Applicant: 哈尔滨理工大学
Abstract: 一种钴掺杂氮化钨柔性复合电极材料及其制备方法,它涉及一种超级电容器电极材料及其制备方法。本发明的目的是要解决现有超级电容器电极材料的比电容低,无法满足超级电容器对更高的容量和能量密度的需求的问题。一种钴掺杂氮化钨柔性复合电极材料以碳布作为基底,在碳布表面生长钴掺杂氮化钨。制备方法:一、浸渍;二、水热合成;三、高温氮化,得到钴掺杂氮化钨柔性复合电极材料。优点:具有较好的电容性能,当电流密度为10mA/cm2时,在1mol/L的H2SO4溶液中的比电容达到1744mF/cm2,单电极循环5000次以后,电容值相对于初始值变为112%。本发明制备的钴掺杂氮化钨柔性复合电极材料用于超级电容器电极上。
-
公开(公告)号:CN110032794A
公开(公告)日:2019-07-19
申请号:CN201910284912.9
申请日:2019-04-10
Applicant: 哈尔滨理工大学
IPC: G06F17/50
Abstract: 一种振动作用下的铣刀动态切削力模型构建与验证方法,属于铣刀技术领域,本发明为了解决已有关于切削力建模的研究,不能揭示刀齿铣削微元瞬时切削力的分布及其变化特性,不能揭示刀齿与刀齿之间瞬时切削力关系,无法准确反映出切削力的动态变化过程的问题。步骤a,对铣刀瞬时切削行为求解;步骤b,对振动作用下的单齿切削边界条件求解;步骤c,建立铣刀刀齿瞬时切削层参数模型并计算;步骤d,建立铣刀刀齿瞬时切削力模型并求解;步骤e,完成铣刀动态切削力模型的构建与验证。本发明的一种振动作用下的铣刀动态切削力模型构建与验证方法能准确反映切削过程中切削力的动态变化的动态切削力模型,对动态切削力预测模型进行三重验证。
-
公开(公告)号:CN114547888B
公开(公告)日:2022-12-16
申请号:CN202210162380.3
申请日:2022-02-22
Applicant: 哈尔滨理工大学
Abstract: 本发明涉及铣削加工技术领域,具体的说是一种铣削加工表面精度分布一致性的工艺设计与验证方法,包括S1、立铣刀铣削侧立面加工误差一致性的设计目标;S2、立铣刀铣削侧立面加工误差一致性的设计变量识别分析方法;S3、立铣刀铣削侧立面加工误差一致性的设计模型;S4、立铣刀铣削侧立面加工误差一致性的设计流程的验证方法。本发明提出的立铣刀铣削侧立面加工误差一致性的设计目标、给出的立铣刀铣削侧立面加工误差一致性的设计变量、提出的立铣刀铣削侧立面加工误差一致性的设计模型和提出的立铣刀铣削侧立面加工误差一致性的设计流程的验证方法,提高加工精度的一致性水平,验证工艺方案的可行性和一致性水平。
-
公开(公告)号:CN110032794B
公开(公告)日:2022-06-24
申请号:CN201910284912.9
申请日:2019-04-10
Applicant: 哈尔滨理工大学
IPC: G06F30/17 , G06F119/14
Abstract: 一种振动作用下的铣刀动态切削力模型构建与验证方法,属于铣刀技术领域,本发明为了解决已有关于切削力建模的研究,不能揭示刀齿铣削微元瞬时切削力的分布及其变化特性,不能揭示刀齿与刀齿之间瞬时切削力关系,无法准确反映出切削力的动态变化过程的问题。步骤a,对铣刀瞬时切削行为求解;步骤b,对振动作用下的单齿切削边界条件求解;步骤c,建立铣刀刀齿瞬时切削层参数模型并计算;步骤d,建立铣刀刀齿瞬时切削力模型并求解;步骤e,完成铣刀动态切削力模型的构建与验证。本发明的一种振动作用下的铣刀动态切削力模型构建与验证方法能准确反映切削过程中切削力的动态变化的动态切削力模型,对动态切削力预测模型进行三重验证。
-
公开(公告)号:CN114547888A
公开(公告)日:2022-05-27
申请号:CN202210162380.3
申请日:2022-02-22
Applicant: 哈尔滨理工大学
Abstract: 本发明涉及铣削加工技术领域,具体的说是一种铣削加工表面精度分布一致性的工艺设计与验证方法,包括S1、立铣刀铣削侧立面加工误差一致性的设计目标;S2、立铣刀铣削侧立面加工误差一致性的设计变量识别分析方法;S3、立铣刀铣削侧立面加工误差一致性的设计模型;S4、立铣刀铣削侧立面加工误差一致性的设计流程的验证方法。本发明提出的立铣刀铣削侧立面加工误差一致性的设计目标、给出的立铣刀铣削侧立面加工误差一致性的设计变量、提出的立铣刀铣削侧立面加工误差一致性的设计模型和提出的立铣刀铣削侧立面加工误差一致性的设计流程的验证方法,提高加工精度的一致性水平,验证工艺方案的可行性和一致性水平。
-
-
-
-
-
-
-
-
-