-
公开(公告)号:CN113691307A
公开(公告)日:2021-11-23
申请号:CN202110927019.0
申请日:2021-08-12
申请人: 哈尔滨工业大学 , 鞍山睿科光电技术有限公司 , 哈尔滨理工大学 , 国家电网公司信息通信分公司 , 国网湖北省电力有限公司检修公司
IPC分类号: H04B10/071
摘要: 本发明提供了一种基于BOTDR和OTDR的OPGW光缆故障定位与预警方法,该方法包括:选取OPGW光缆的多个空余纤芯,利用OTDR和BOTDR分别测试多个空余纤芯的损耗和布里渊频移数据;基于多个空余纤芯的布里渊频移数据,确定熔接点;将所确定的熔接点与杆塔信息中的熔接杆塔位置进行对应,以定位熔接杆塔和应变异常区域;基于测试所得的多个空余纤芯的损耗以及熔接点与熔接杆塔位置的对应关系,识别非熔接点处大于第一阈值的损耗点,作为候选故障点;若候选故障点位于应变异常区域内,则进行故障点预警且预警的类型为第一类型。本发明的上述方法,能够为OPGW光缆运行提供更为精确的预警手段,准确定位应变和衰减异常的区域,具有重要意义。
-
公开(公告)号:CN113691307B
公开(公告)日:2022-10-11
申请号:CN202110927019.0
申请日:2021-08-12
申请人: 哈尔滨工业大学 , 鞍山睿科光电技术有限公司 , 哈尔滨理工大学 , 国家电网有限公司信息通信分公司 , 国网湖北省电力有限公司检修公司
IPC分类号: H04B10/071
摘要: 本发明提供了一种基于BOTDR和OTDR的OPGW光缆故障定位与预警方法,该方法包括:选取OPGW光缆的多个空余纤芯,利用OTDR和BOTDR分别测试多个空余纤芯的损耗和布里渊频移数据;基于多个空余纤芯的布里渊频移数据,确定熔接点;将所确定的熔接点与杆塔信息中的熔接杆塔位置进行对应,以定位熔接杆塔和应变异常区域;基于测试所得的多个空余纤芯的损耗以及熔接点与熔接杆塔位置的对应关系,识别非熔接点处大于第一阈值的损耗点,作为候选故障点;若候选故障点位于应变异常区域内,则进行故障点预警且预警的类型为第一类型。本发明的上述方法,能够为OPGW光缆运行提供更为精确的预警手段,准确定位应变和衰减异常的区域,具有重要意义。
-
公开(公告)号:CN114039656A
公开(公告)日:2022-02-11
申请号:CN202111193345.X
申请日:2021-10-13
申请人: 哈尔滨工业大学 , 国家电网公司信息通信分公司 , 鞍山睿科光电技术有限公司 , 哈尔滨理工大学
IPC分类号: H04B10/071
摘要: 一种基于BOTDR和OTDR的OPGW故障定位方法及装置,属于光纤通信领域,用以解决现有技术中由于不能精确定位杆塔的位置导致故障定位不准确的问题。本发明首先利用BOTDR测量布里渊频移跳变,并结合杆塔明细表中档距、塔高及杆塔类型信息,识别接续点并定位接续杆塔;进一步利用OTDR测量损耗来识别利用BOTDR不能识别到的接续点,从而精确定位所有接续点;对于非接续杆塔定位,根据OPGW光缆内部纤芯受力形态或根据相邻接续杆塔的定位结构获取非接续杆塔位置及其对应的累计光纤长度;最后利用BOTDR或者OTDR测量待测光缆,并结合接续杆塔及非接续杆塔位置及其对应的累计光纤长度判断故障所处杆塔。本发明可以精准定位接续点,为维护和校验杆塔明细表提供重要参考。
-
公开(公告)号:CN114039656B
公开(公告)日:2023-04-25
申请号:CN202111193345.X
申请日:2021-10-13
申请人: 哈尔滨工业大学 , 国家电网有限公司信息通信分公司 , 鞍山睿科光电技术有限公司 , 哈尔滨理工大学
IPC分类号: H04B10/071
摘要: 一种基于BOTDR和OTDR的OPGW故障定位方法及装置,属于光纤通信领域,用以解决现有技术中由于不能精确定位杆塔的位置导致故障定位不准确的问题。本发明首先利用BOTDR测量布里渊频移跳变,并结合杆塔明细表中档距、塔高及杆塔类型信息,识别接续点并定位接续杆塔;进一步利用OTDR测量损耗来识别利用BOTDR不能识别到的接续点,从而精确定位所有接续点;对于非接续杆塔定位,根据OPGW光缆内部纤芯受力形态或根据相邻接续杆塔的定位结构获取非接续杆塔位置及其对应的累计光纤长度;最后利用BOTDR或者OTDR测量待测光缆,并结合接续杆塔及非接续杆塔位置及其对应的累计光纤长度判断故障所处杆塔。本发明可以精准定位接续点,为维护和校验杆塔明细表提供重要参考。
-
公开(公告)号:CN110311600A
公开(公告)日:2019-10-08
申请号:CN201910583770.6
申请日:2019-07-01
申请人: 哈尔滨理工大学
摘要: 本发明公开一种开绕组永磁同步电动机的模型预测电流控制方法的研究,属于永磁同步电动机模型预测电流控制技术领域,其特征在于:该研究采用开绕组永磁同步电动机,它保持永磁同步电动机的定转子结构特点,将绕组的中性点打开,形成开绕组永磁同步电动机,提高转换器的输出电压。模型预测电流控制方法的核心思想是预测系统下一时刻的电流状态量,具有动态响应迅速等优点。把模型预测电流控制方法应用于开绕组永磁同步电动机的电流环控制系统中,根据矢量筛选中dq0轴电流误差值最小的原则,有效抑制开绕组永磁同步电动机的零序电流。
-
公开(公告)号:CN109980687A
公开(公告)日:2019-07-05
申请号:CN201910262201.1
申请日:2019-04-02
申请人: 哈尔滨理工大学
摘要: 一种组合型低压穿越控制系统、低压穿越无功功率补偿方法及灭磁控制方法属于风力发电技术领域;电网电压发生跌落故障时,转子侧过电流,网侧变换器输出功率受到限制,能量在直流侧积累会造成直流侧电压升高,可能会损坏直流侧电容和功率器件;系统和低压穿越无功功率补偿方法采用灭磁控制方法和直流侧卸荷电路相结合,其中灭磁控制方法采用三步预测法增强灭磁控制效果,既解决了电网故障时双馈风力发电系统的低压穿越问题,也解决了直流侧能量积累问题,运用了STATCOM主电路,解决了双馈感应电机在异步运行时的无功需求问题。
-
公开(公告)号:CN106253527A
公开(公告)日:2016-12-21
申请号:CN201610776777.6
申请日:2016-08-29
申请人: 哈尔滨理工大学
IPC分类号: H02K1/32
CPC分类号: H02K1/32 , H02K2213/03
摘要: 本发明涉及一种具有工字形截面槽钢的电机转子通风结构,主要包括径向通风沟、转子齿、轴向通风道、转子铁心以及槽钢。转子铁心沿轴向均匀分成数段,相邻转子铁心之间留有一定空隙,形成径向通风沟,相邻的分段转子铁心的转子齿在轴向上一一对应,槽钢位于径向通风沟中并沿圆周分布,并安装在相邻分段转子铁心转子齿之间,相邻分段转子铁心的每个转子齿之间放置有工字形截面流线型槽钢和工字形截面直线型槽钢,转子铁心靠近转轴处开槽,形成轴向通风道,为冷却介质流动提供通路,本发明所述结构充分发挥其扇风能力及流体导向作用,很大程度提升转子散热效果,进而提升电机工作效率。
-
公开(公告)号:CN112836736B
公开(公告)日:2022-12-30
申请号:CN202110116366.5
申请日:2021-01-28
申请人: 哈尔滨理工大学
IPC分类号: G06V10/764 , G06V10/82 , G06N3/08
摘要: 一种基于深度自编码器构图的高光谱图像半监督分类方法,涉及遥感图像处理技术领域,用以解决现有高光谱图像分类方法中存在的分类效果不佳的技术问题。本发明方法的技术要点包括:构建稀疏自编码器用于获得高光谱图像数据的谱域特征;用基于自我表达模型的方法构造图结构;利用变分图自编码器(VGAE)优化图结构;对优化后的图结构的系数矩阵进行修正;利用高斯随机场和调和函数(GRF)实现分类。本发明充分考虑了高光谱数据间的相互联系,并且兼顾高光谱数据的谱域信息和空域信息,在小样本条件下能够使高光谱数据分类达到较高的准确率。
-
公开(公告)号:CN112836736A
公开(公告)日:2021-05-25
申请号:CN202110116366.5
申请日:2021-01-28
申请人: 哈尔滨理工大学
摘要: 一种基于深度自编码器构图的高光谱图像半监督分类方法,涉及遥感图像处理技术领域,用以解决现有高光谱图像分类方法中存在的分类效果不佳的技术问题。本发明方法的技术要点包括:构建稀疏自编码器用于获得高光谱图像数据的谱域特征;用基于自我表达模型的方法构造图结构;利用变分图自编码器(VGAE)优化图结构;对优化后的图结构的系数矩阵进行修正;利用高斯随机场和调和函数(GRF)实现分类。本发明充分考虑了高光谱数据间的相互联系,并且兼顾高光谱数据的谱域信息和空域信息,在小样本条件下能够使高光谱数据分类达到较高的准确率。
-
公开(公告)号:CN106374659A
公开(公告)日:2017-02-01
申请号:CN201610777212.X
申请日:2016-08-29
申请人: 哈尔滨理工大学
摘要: 本发明涉及一种电机转子槽钢不同组合下的转子散热结构,主要包括径向通风沟、转子齿、轴向通风道、转子铁心以及槽钢。转子铁心沿轴向均匀分成数段,相邻转子铁心之间留有一定空隙,形成径向通风沟,相邻的分段转子铁心的转子齿在轴向上一一对应,槽钢位于径向通风沟中并沿圆周分布,并安装在相邻分段转子铁心的转子齿之间,相邻分段转子铁心的每个转子齿之间放置有两根或三根工字形截面直线型槽钢,转子铁心靠近转轴处开槽,形成轴向通风道,为冷却介质流动提供通路,本发明所述结构在保证其支撑强度的前提下,充分发挥其扇风能力及流体导向作用,很大程度提升转子散热效果,进而提升电机工作效率。
-
-
-
-
-
-
-
-
-