-
公开(公告)号:CN115415537B
公开(公告)日:2023-10-13
申请号:CN202211006977.5
申请日:2022-08-22
Applicant: 哈尔滨工业大学(深圳) , 中碳国际新能源科技(天津)有限公司
Abstract: 本发明提供了一种采用高温热辐射的合金型纳米材料的制备方法及应用,该制备方法包括如下步骤:将模板剂、有机/无机金属盐、水溶性碳源溶于去离子水中,获得合金型纳米材料的前驱体溶液,然后进行冷冻干燥处理,得到干燥的前驱体粉末;对干燥的前驱体粉末在惰性气氛中进行高温热辐射处理,所述高温热辐射处理的升温速率为不小于400℃/s,反应温度为500~2000℃,保温时间为不大于20s,然后以不小于100℃/s的降温速率进行降温,得到粉末材料;将所述粉末材料进行清洗去除模板剂,烘干,得到合金型纳米材料。本发明的技术方案获得的合金纳米材料纳米尺寸更细小,颗粒分布更均匀,合金含量更高,更有利于电化学性能的提高。
-
公开(公告)号:CN105223125B
公开(公告)日:2018-03-30
申请号:CN201510657869.8
申请日:2015-10-13
Applicant: 哈尔滨工业大学
Abstract: 基于应力和结合强度演变机制的涂层寿命预测方法,涉及一种涂层寿命的预测方法。本发明为了解决目前还没有一种全面客观的涂层寿命预测方法的问题。本发明首先建立残余应力—时间变化关系和氧化层应力—时间变化关系;并建立涂层应力演变物理模型;然后进行热循环加速试样老化实验,根据涂层应力演变物理模型与试样应力值—时间关系得到人工加速老化的试样的加速倍数;再采用划痕仪对人工加速老化的试样进行结合强度测试,拟合出结合强度—老化时间的关系并绘制成变化曲线将变化曲线与时间轴的交点所对应的时间作为人工加速老化的试样寿命l;以L=试样寿命l*最终加速倍数k作为的预测寿命。本发明适用于涂层寿命的预测领域。
-
公开(公告)号:CN105296966A
公开(公告)日:2016-02-03
申请号:CN201510786301.6
申请日:2015-11-16
Applicant: 哈尔滨工业大学
Abstract: 微波增强等离子体化学气相沉积中功率-气压-温度耦合方法,它涉及微波增强等离子体化学气相沉积技术的改进方法。本发明要解决现有的MPCVD技术制备金刚石薄膜过程中,由于基体温度、功率密度和沉积气压对于制备出的金刚石薄膜质量影响大的问题。本发明方法为:步骤一、实验数据采集步骤;二、检测试样质量;步骤三、制备工艺参数关系拟合。本发明的方法可以提高单晶金刚石的生长质量。
-
公开(公告)号:CN115415537A
公开(公告)日:2022-12-02
申请号:CN202211006977.5
申请日:2022-08-22
Applicant: 哈尔滨工业大学(深圳) , 中碳国际新能源科技(天津)有限公司
Abstract: 本发明提供了一种采用高温热辐射的合金型纳米材料的制备方法及应用,该制备方法包括如下步骤:将模板剂、有机/无机金属盐、水溶性碳源溶于去离子水中,获得合金型纳米材料的前驱体溶液,然后进行冷冻干燥处理,得到干燥的前驱体粉末;对干燥的前驱体粉末在惰性气氛中进行高温热辐射处理,所述高温热辐射处理的升温速率为不小于400℃/s,反应温度为500~2000℃,保温时间为不大于20s,然后以不小于100℃/s的降温速率进行降温,得到粉末材料;将所述粉末材料进行清洗去除模板剂,烘干,得到合金型纳米材料。本发明的技术方案获得的合金纳米材料纳米尺寸更细小,颗粒分布更均匀,合金含量更高,更有利于电化学性能的提高。
-
公开(公告)号:CN105296966B
公开(公告)日:2017-11-03
申请号:CN201510786301.6
申请日:2015-11-16
Applicant: 哈尔滨工业大学
Abstract: 微波增强等离子体化学气相沉积中功率‑气压‑温度耦合方法,它涉及微波增强等离子体化学气相沉积技术的改进方法。本发明要解决现有的MPCVD技术制备金刚石薄膜过程中,由于基体温度、功率密度和沉积气压对于制备出的金刚石薄膜质量影响大的问题。本发明方法为:步骤一、实验数据采集步骤;二、检测试样质量;步骤三、制备工艺参数关系拟合。本发明的方法可以提高单晶金刚石的生长质量。
-
公开(公告)号:CN105223125A
公开(公告)日:2016-01-06
申请号:CN201510657869.8
申请日:2015-10-13
Applicant: 哈尔滨工业大学
Abstract: 基于应力和结合强度演变机制的涂层寿命预测方法,涉及一种涂层寿命的预测方法。本发明为了解决目前还没有一种全面客观的涂层寿命预测方法的问题。本发明首先建立残余应力—时间变化关系和氧化层应力—时间变化关系;并建立涂层应力演变物理模型;然后进行热循环加速试样老化实验,根据涂层应力演变物理模型与试样应力值—时间关系得到人工加速老化的试样的加速倍数;再采用划痕仪对人工加速老化的试样进行结合强度测试,拟合出结合强度—老化时间的关系并绘制成变化曲线将变化曲线与时间轴的交点所对应的时间作为人工加速老化的试样寿命l;以L=试样寿命l*最终加速倍数k作为的预测寿命。本发明适用于涂层寿命的预测领域。
-
-
-
-
-