基于残差结构编码器解码器架构的视频人脸隐私保护方法

    公开(公告)号:CN118096586A

    公开(公告)日:2024-05-28

    申请号:CN202311178141.8

    申请日:2023-09-13

    Abstract: 本发明公开了一种基于残差结构编码器解码器架构的视频人脸隐私保护方法,涉及视频隐私保护技术领域。所述方法包括:采集摄像头拍摄的人脸视频数据并将其处理为第一图片数据,提取所述第一图片数据中的人脸图片数据;将所述人脸图片数据进行模糊处理,获得模糊人脸图片数据;训练人脸和模糊人脸二分类模型,使用所述二分类模型识别所述人脸图片数据和所述模糊人脸图片数据;训练残差结构复杂编码器模型、残差结构复杂解码器模型和密码模型;本发明既可以在不降低视频质量的情况下实现较高程度的隐私保护,又可以在得到密码授权后对进行了隐私保护后的视频进行高度还原,同时该方法的操作非常简单,只需将训练好的模型接入需要隐藏视频的设备。

    基于残差结构编码器解码器架构的视频人脸隐私保护方法

    公开(公告)号:CN118096586B

    公开(公告)日:2025-01-14

    申请号:CN202311178141.8

    申请日:2023-09-13

    Abstract: 本发明公开了一种基于残差结构编码器解码器架构的视频人脸隐私保护方法,涉及视频隐私保护技术领域。所述方法包括:采集摄像头拍摄的人脸视频数据并将其处理为第一图片数据,提取所述第一图片数据中的人脸图片数据;将所述人脸图片数据进行模糊处理,获得模糊人脸图片数据;训练人脸和模糊人脸二分类模型,使用所述二分类模型识别所述人脸图片数据和所述模糊人脸图片数据;训练残差结构复杂编码器模型、残差结构复杂解码器模型和密码模型;本发明既可以在不降低视频质量的情况下实现较高程度的隐私保护,又可以在得到密码授权后对进行了隐私保护后的视频进行高度还原,同时该方法的操作非常简单,只需将训练好的模型接入需要隐藏视频的设备。

    基于窄带约束增强的自适应连续变分脑电模态分解方法

    公开(公告)号:CN117462150A

    公开(公告)日:2024-01-30

    申请号:CN202311426236.7

    申请日:2023-10-30

    Abstract: 基于窄带约束增强的自适应连续变分脑电模态分解方法,解决了需要预先确定模式个数及模式中心频率问题,提高了模式分解性能,属于信号处理技术领域。本发明包括:输入脑电信号f(t),建立脑电信号的模态分解的优化问题:J1为模式带宽,Th为带宽阈值,J2为余留信号fr(t)在uL(t)上的能量,J3为uL(t)在已分解的模式ui(t)上的能量;本发明对优化问题进行求解,逐次连续分解得到脑电信号分解后的第L个模式uL(t)。在最小带宽的基础上引入了额外的约束,要求模式最小带宽小于根据信号特征自动设置的阈值。本发明有着更优越的分解性能。

    一种情感EEG的脑功能网络分析方法

    公开(公告)号:CN113017651B

    公开(公告)日:2022-06-21

    申请号:CN202110281415.0

    申请日:2021-03-16

    Abstract: 一种情感EEG的脑功能网络分析方法,涉及一种情感EEG的脑功能网络分析技术,为了解决目前EEG情感脑功能网络分析中网络节点不一致导致通用性差的问题。本发明基于脑电信号的相关性和同步性,构建32节点小尺度脑功能网络,并将其分为二值网络和加权网络;对比分析二值和加权网络在不同情感下的全局和局部属性;利用定义脑区作为第二节点,研究该10个节点的局部属性;构建10节点大尺度脑功能网络,并对不同情感脑网络属性进行分析,得出10节点脑功能网络的局部属性;最后对比32节点与10节点脑功能网络的局部属性,得出局部属性变化的共同性及差异性,实现对不同情感脑电信号的网络分析。有益效果为通用性强。

    基于表情识别及脑电融合的观影印象检测方法

    公开(公告)号:CN113197573B

    公开(公告)日:2022-06-17

    申请号:CN202110547301.6

    申请日:2021-05-19

    Abstract: 基于表情识别及脑电融合的观影印象检测方法,属于观影印象检测领域。本发明为解决现有技术中无法定量评定用户对广告内容的主观印象以及不利于在大数据层面上分析的问题。本发明检测方法包括如下:采集观影时间段内的观影表情变化视频及脑电信号;根据观影表情变化视频,获得观看过程中的愉悦程度B1和专注程度B2,并将B1与B2的乘积作为表情印象指数m1;同时还对脑电信号进行傅里叶变化,获得功率谱密度P(w);再根据P(w)获得各频段的频带能量占比及相关频段的频带能量比,并将其送入支持向量机SVM,获得脑电印象指数m2;利用DS决策融合算法对表情印象指数m1和脑电印象指数m2进行融合,从而获得决策结果m。主要用于对观影印象进行量化。

    用于睡眠脑电分期特征选择的自适应模拟退火遗传算法

    公开(公告)号:CN107220708A

    公开(公告)日:2017-09-29

    申请号:CN201710484675.1

    申请日:2017-06-23

    Abstract: 本发明公开了一种用于睡眠脑电分期特征选择的自适应模拟退火遗传算法,通过脑电信号进行睡眠分期,需要从脑电信号中提取大量特征参数,从中筛选出相对最优的特征参数组合用于睡眠脑电数学模型的建立。在已有的模拟退火遗传算法中,保留了遗传算法较强的总体搜索能力和模拟退火算法较强的局部搜索能力,以期提高产生优良个体的概率。但现有算法对迭代过程中的个体进行模拟退火操作时,在当前最优解的邻域内随机产生新解的机制存在致命的缺陷,本发明针对这一缺陷,不仅解决了传统模拟退火遗传算法邻域新解产生机制的迭代效率低、受邻域范围影响大等缺点,而且能够实现交叉概率和变异概率的自适应调整,同时采用加权方式进行适应度函数的设计。

Patent Agency Ranking