基于残差结构编码器解码器架构的视频人脸隐私保护方法

    公开(公告)号:CN118096586A

    公开(公告)日:2024-05-28

    申请号:CN202311178141.8

    申请日:2023-09-13

    Abstract: 本发明公开了一种基于残差结构编码器解码器架构的视频人脸隐私保护方法,涉及视频隐私保护技术领域。所述方法包括:采集摄像头拍摄的人脸视频数据并将其处理为第一图片数据,提取所述第一图片数据中的人脸图片数据;将所述人脸图片数据进行模糊处理,获得模糊人脸图片数据;训练人脸和模糊人脸二分类模型,使用所述二分类模型识别所述人脸图片数据和所述模糊人脸图片数据;训练残差结构复杂编码器模型、残差结构复杂解码器模型和密码模型;本发明既可以在不降低视频质量的情况下实现较高程度的隐私保护,又可以在得到密码授权后对进行了隐私保护后的视频进行高度还原,同时该方法的操作非常简单,只需将训练好的模型接入需要隐藏视频的设备。

    基于残差结构编码器解码器架构的视频人脸隐私保护方法

    公开(公告)号:CN118096586B

    公开(公告)日:2025-01-14

    申请号:CN202311178141.8

    申请日:2023-09-13

    Abstract: 本发明公开了一种基于残差结构编码器解码器架构的视频人脸隐私保护方法,涉及视频隐私保护技术领域。所述方法包括:采集摄像头拍摄的人脸视频数据并将其处理为第一图片数据,提取所述第一图片数据中的人脸图片数据;将所述人脸图片数据进行模糊处理,获得模糊人脸图片数据;训练人脸和模糊人脸二分类模型,使用所述二分类模型识别所述人脸图片数据和所述模糊人脸图片数据;训练残差结构复杂编码器模型、残差结构复杂解码器模型和密码模型;本发明既可以在不降低视频质量的情况下实现较高程度的隐私保护,又可以在得到密码授权后对进行了隐私保护后的视频进行高度还原,同时该方法的操作非常简单,只需将训练好的模型接入需要隐藏视频的设备。

    基于脑电图的面向跨受试疼痛分类方法

    公开(公告)号:CN119782880A

    公开(公告)日:2025-04-08

    申请号:CN202411842229.X

    申请日:2024-12-13

    Abstract: 基于脑电图的面向跨受试疼痛分类方法,解决如何有效提高跨受试疼痛分类的可靠性且减轻临床数据采集压力的问题,属于脑电图数据评估领域。本发明包括:识别目标受试者和历史数据集中历史受试者疼痛敏感度高度相关的静息EEG特征,并筛选出历史数据集中与目标受试者有相似疼痛反应的历史受试者,组成目标受试者的源受试者集合;利用源受试者集合构建伪标签,并在考虑认知等实验动态因素的情况下优化源受试者集合,得到源域;利用源域和目标域进行自适应迁移学习,对所有源域学习后得到的目标域的标签进行加权融合,得到目标受试者的预测分类结果,完成分类。

    基于动态阈值和EasyTL的跨个体表面肌电信号手势识别方法

    公开(公告)号:CN114098768B

    公开(公告)日:2024-05-03

    申请号:CN202111417486.5

    申请日:2021-11-25

    Abstract: 基于动态阈值和EasyTL的跨个体表面肌电信号手势识别方法,属于康复治疗领域,为了解决现有的识别方法在模型选择和参数调节时,存在耗时长以及识别效率低的问题。本发明针对样本个体采集的原始表面肌电信号进行滤波和活动段识别后,进行特征值提取,构建源域;以源域为基础,引入概率矩阵和中心距离构建损失函数,通过线性规划方法求出解迁移学习分类器;对待识别个体的原始表面肌电信号依次进行采集、滤波和活动段识别后,进行特征值提取,生成目标域;将目标域与源域进行域内对齐后输入迁移学习分类器,完成对待识别个体的手势动作的识别。有益效果为避免了模型选择和参数调节的同时,减少了标签数据和训练时间。

    基于脑电信号频带能量比特征的驾驶疲劳检测方法

    公开(公告)号:CN109480872B

    公开(公告)日:2021-09-17

    申请号:CN201811327333.X

    申请日:2018-11-08

    Abstract: 基于脑电信号频带能量比特征的驾驶疲劳检测方法,本发明涉及一种脑电信号分析方法。本发明目的是为解决现有的检测技术多以人的外部行为特征作为依据,难以准确地了解驾驶员的心理、生理属性,不易客观地评价驾驶员的疲劳状态,主观性过强,导致驾驶疲劳检测结果准确率低的问题。过程为:一、采集驾驶者脑电信号;二、进行预处理;三、得到局部均值分解后的乘积函数;四、得到重构的脑电信号;五、求解功率谱密度;六、求解脑电信号不同波段的频带能量比;七、对四进行归一化处理;八、求取标准差,将标准差、脑电信号不同波段的频带能量比作为BP神经网络的输入参数,输出疲劳状态。本发明用于驾驶疲劳检测领域。

    一种多关节诊疗机器人柔顺力控制模式下的重力补偿方法

    公开(公告)号:CN113319855A

    公开(公告)日:2021-08-31

    申请号:CN202110719915.8

    申请日:2021-06-28

    Abstract: 一种多关节诊疗机器人柔顺力控制模式下的重力补偿方法,属于诊疗机器人力控领域,为了解决现有的重力补偿方法对诊疗机器人重力补偿精度不足的问题。本发明实时记录机器人多个姿态下的姿态矩阵以及传感器的测量值,构造线性方程组,通过最小二乘法求解诊疗工具的参数向量;在诊疗工具处于初始位置时以及按照大地坐标系调整诊疗工具的姿态,使诊疗工具的重力只剩沿六维力与力矩传感器坐标的y轴方向时,分别记录传感器的测量值;在传感器坐标系下,利用降维解析法计算诊疗工具重心的位置;计算出诊疗工具的重力分量与力矩分量补偿值,实现对诊疗工具的重力补偿。有益效果为实现对多种诊疗工具在多姿态工作模式下的高精度重力补偿。

    基于表情识别及脑电融合的观影印象检测方法

    公开(公告)号:CN113197573A

    公开(公告)日:2021-08-03

    申请号:CN202110547301.6

    申请日:2021-05-19

    Abstract: 基于表情识别及脑电融合的观影印象检测方法,属于观影印象检测领域。本发明为解决现有技术中无法定量评定用户对广告内容的主观印象以及不利于在大数据层面上分析的问题。本发明检测方法包括如下:采集观影时间段内的观影表情变化视频及脑电信号;根据观影表情变化视频,获得观看过程中的愉悦程度B1和专注程度B2,并将B1与B2的乘积作为表情印象指数m1;同时还对脑电信号进行傅里叶变化,获得功率谱密度P(w);再根据P(w)获得各频段的频带能量占比及相关频段的频带能量比,并将其送入支持向量机SVM,获得脑电印象指数m2;利用DS决策融合算法对表情印象指数m1和脑电印象指数m2进行融合,从而获得决策结果m。主要用于对观影印象进行量化。

Patent Agency Ranking