-
公开(公告)号:CN113840471B
公开(公告)日:2023-05-09
申请号:CN202010579800.9
申请日:2020-06-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种制备柔性电子的方法,包括以下步骤:S1、使用负压法将液态的GaIn液态金属或液态的GaInSn液态金属灌入硅胶管内;S2、将灌有液态金属的硅胶管在低温环境下进行保存,直到结晶凝固;S3、将结晶凝固的液态金属从硅胶管中取出,得到金属丝;S4、使用金属丝构建电路图案,得到目标电路;S5、使用液态硅胶封装目标电路;S6、待液态硅胶固化后,进行加热,使固态的金属丝熔化为液态,得到柔性电子。本发明还提供了一种柔性电子。本发明的有益效果是:能够简化液态金属制备柔性电子的制造工艺,提高良品率,降低成本。
-
公开(公告)号:CN113840471A
公开(公告)日:2021-12-24
申请号:CN202010579800.9
申请日:2020-06-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种制备柔性电子的方法,包括以下步骤:S1、使用负压法将液态的GaIn液态金属或液态的GaInSn液态金属灌入硅胶管内;S2、将灌有液态金属的硅胶管在低温环境下进行保存,直到结晶凝固;S3、将结晶凝固的液态金属从硅胶管中取出,得到金属丝;S4、使用金属丝构建电路图案,得到目标电路;S5、使用液态硅胶封装目标电路;S6、待液态硅胶固化后,进行加热,使固态的金属丝熔化为液态,得到柔性电子。本发明还提供了一种柔性电子。本发明的有益效果是:能够简化液态金属制备柔性电子的制造工艺,提高良品率,降低成本。
-
公开(公告)号:CN113834416A
公开(公告)日:2021-12-24
申请号:CN202010583544.0
申请日:2020-06-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G01B7/16
Abstract: 本发明提供了一种制备液态金属应变传感器的方法,包括以下步骤:S1、制备嵌入体,使用凝固态的液态金属丝缠绕嵌入体;S2、制备具有主凹槽的长方体模具,所述主凹槽的槽底的中部为凸台,所述主凹槽的槽底的两侧为子凹槽,在所述子凹槽内填充液态的第一硅胶,待第一硅胶固化后,在所述主凹槽的槽底填充液态的第二硅胶并固化;S3、将所述传感器主体放入所述传感器壳体的主凹槽内;S4、熔化凝固态的液态金属丝。本发明还提供了一种液态金属应变传感器。本发明的有益效果是:采用本方法制备的传感器不容易失效,解决了目前采用的刚性嵌入体提高液态金属应变传感器灵敏度容易导致传感器失效的问题,从而提高传感器服役过程的稳定性。
-
公开(公告)号:CN113834416B
公开(公告)日:2024-02-13
申请号:CN202010583544.0
申请日:2020-06-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G01B7/16
Abstract: 本发明提供了一种制备液态金属应变传感器的方法,包括以下步骤:S1、制备嵌入体,使用凝固态的液态金属丝缠绕嵌入体;S2、制备具有主凹槽的长方体模具,所述主凹槽的槽底的中部为凸台,所述主凹槽的槽底的两侧为子凹槽,在所述子凹槽内填充液态的第一硅胶,待第一硅胶固化后,在所述主凹槽的槽底填充液态的第二硅胶并固化;S3、将所述传感器主体放入所述传感器壳体的主凹槽内;S4、熔化凝固态的液态金属丝。本发明还提供了一种液态金属应变传感器。本发明的有益效果是:采用本方法制备的传感器不容易失效,解决了目前采用的刚性嵌入体提高液态金属应变传感器灵敏度容易导致传感器失效的问题,从而提高传感器服役过程的稳定性。
-
公开(公告)号:CN119751060A
公开(公告)日:2025-04-04
申请号:CN202411992508.4
申请日:2024-12-31
Applicant: 哈尔滨工业大学
IPC: C04B35/488 , C04B35/622 , C04B35/638 , C23C14/30 , C23C14/08 , C23C14/02
Abstract: 本发明公开了一种超高温EB‑PVD热障涂层的制备方法,所述方法以纳米Sm2O3粉体、纳米Eu2O3粉体、纳米Tb2O3粉体、纳米Dy2O3粉体、纳米Lu2O3粉体和纳米ZrO2粉体五种稀土氧化物与氧化锆先通过喷雾造粒获得靶材原料粉体;经过筛分获得不同粒径配比球型粉体,利用冷等静压制作靶材生胚,随后烧结生胚靶材;利用EB‑PVD技术在涂有粘结层的样品表面沉积高熵锆酸盐陶瓷涂层。本发明制备的涂层具有较好的高温相稳定性、与基体材料更匹配的热膨胀系数和极低的高温热导率,尤其是在1700℃高温服役条件下物相、结构和成分的稳定性良好,可取代当前使用的单一体系EB‑PVD材料,提高现有热障涂层的高温稳定性。
-
公开(公告)号:CN118326310A
公开(公告)日:2024-07-12
申请号:CN202410452329.5
申请日:2024-04-16
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种高介电击穿强度纳米结构氧化铝绝缘涂层,所述纳米结构氧化铝绝缘涂层的制备步骤如下:一、在球磨机中加入去离子水、磨球、分散剂、亚微米氧化铝粉体、纳米氧化铝粉体、粘结剂和消泡剂球磨,得到浆料;二、对浆料进行喷雾造粒,得到氧化铝团聚粉体;三、将氧化铝团聚粉体进行固相烧结,通过对固相烧结后的粉体进行筛分,得到纳米结构氧化铝喂料粉体;四、将纳米结构氧化铝喂料粉体进行大气等离子喷涂,制备出具有高介电击穿强度的纳米结构氧化铝绝缘涂层。该方法利用纳米级尺寸氧化铝的高烧结活性,使得粉体中尽可能保留更多的纳米尺寸粉体,从而有效提升制备涂层的介电击穿强度。
-
公开(公告)号:CN118326307A
公开(公告)日:2024-07-12
申请号:CN202410452321.9
申请日:2024-04-16
Applicant: 哈尔滨工业大学
IPC: C23C4/073 , C23C4/129 , C23C4/02 , C23C4/134 , C23C4/10 , C23C14/30 , C23C14/16 , C23C14/08 , C23C14/22
Abstract: 本发明公开了一种氢燃料燃气轮机用纳米结构热防护涂层及其制备方法,所述纳米结构热防护涂层以高温合金作为基体,在基体表面依次沉积粘结底层、钇稳定氧化锆或锆酸盐中间层和硅酸盐顶层。本发明从涂层结构设计出发,针对现有燃气轮机用热防护涂层使用温度低、耐水氧腐蚀性能差等问题,通过将硅酸盐材料的耐水氧腐蚀功能叠加到燃气轮机用热防护涂层上,通过对涂层结构的优化设计,形成一种抗高温腐蚀的新型热防护涂层结构,不仅能够满足更极端服役环境,而且能抵御高温下的水氧腐蚀,不仅适用于氢燃料发电用燃气轮机,而且同样适用于燃氢或混氢船用燃机、氢燃料火箭发动机等多种氢燃料燃气轮机。
-
公开(公告)号:CN115321992B
公开(公告)日:2023-09-22
申请号:CN202211081383.0
申请日:2022-09-06
Applicant: 哈尔滨工业大学
IPC: C04B35/626 , C04B35/628 , C04B35/488 , C23C4/134 , C23C4/10
Abstract: 一种GNPs/YSZ复合陶瓷粉体及其制备方法和应用,属于陶瓷材料技术领域,具体方案如下:一种GNPs/YSZ复合陶瓷粉体,包括硅溶胶包覆的GNPs粉体和YSZ粉体。制备步骤如下:步骤一、将纳米级GNPs粉体、分散剂、硅溶胶和去离子水混合均匀,然后加入粘结剂混合均匀得到混合液A,喷雾造粒得到硅溶胶包覆的GNPs粉体;步骤二、将硅溶胶包覆的GNPs粉体与YSZ粉体混合均匀,烧结得到GNPs/YSZ复合陶瓷粉体。将GNPs/YSZ复合陶瓷粉体沉积在可伐合金上,在可伐合金上形成无粘结层的GNPs/YSZ复合陶瓷涂层。本发明制备工艺简单,成本较低,可实现大批量生产。
-
公开(公告)号:CN115321992A
公开(公告)日:2022-11-11
申请号:CN202211081383.0
申请日:2022-09-06
Applicant: 哈尔滨工业大学
IPC: C04B35/626 , C04B35/628 , C04B35/488 , C23C4/134 , C23C4/10
Abstract: 一种GNPs/YSZ复合陶瓷粉体及其制备方法和应用,属于陶瓷材料技术领域,具体方案如下:一种GNPs/YSZ复合陶瓷粉体,包括硅溶胶包覆的GNPs粉体和YSZ粉体。制备步骤如下:步骤一、将纳米级GNPs粉体、分散剂、硅溶胶和去离子水混合均匀,然后加入粘结剂混合均匀得到混合液A,喷雾造粒得到硅溶胶包覆的GNPs粉体;步骤二、将硅溶胶包覆的GNPs粉体与YSZ粉体混合均匀,烧结得到GNPs/YSZ复合陶瓷粉体。将GNPs/YSZ复合陶瓷粉体沉积在可伐合金上,在可伐合金上形成无粘结层的GNPs/YSZ复合陶瓷涂层。本发明制备工艺简单,成本较低,可实现大批量生产。
-
公开(公告)号:CN110535126B
公开(公告)日:2022-10-11
申请号:CN201910836533.6
申请日:2019-09-05
Applicant: 哈尔滨工业大学 , 国网黑龙江省电力有限公司电力科学研究院
IPC: H02J3/00
Abstract: 本发明公开一种基于电气支路电能损失的负荷成本分摊方法和智能电表,属于供电技术领域,方法如下:计算由支路受端节点不同负荷分摊的支路瞬时电流、瞬时电阻、瞬时电感等时变参数可求得对应的瞬时损耗功率和瞬时充放电功率,利用此信息可积分求得交流工频整周期下的电阻损失电能分摊结果以及充放电能量分配关系,在综合考虑支路受端节点不同负荷分摊的电阻损失电能、电感充放电能量、穿越电能等信息,绘制出完整的能量分配关系总图,利用能量分配关系总图和送受端节点电价、支路输电价格等信息,可核算不同负荷分摊的输电成本以及购、输、售全过程的经济流。本发明能真实地反映电气支路使用情况的物理实际,降低网损和提高输电效率。
-
-
-
-
-
-
-
-
-