-
公开(公告)号:CN113420376A
公开(公告)日:2021-09-21
申请号:CN202110670301.5
申请日:2021-06-17
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/20 , G06F119/14
Abstract: 本发明公开了一种基于多尺度的碳纤维复合材料抗冲击力学性能仿真方法,包括:步骤一、进行CFRP准静态试验,获取参数;步骤二、进行不同工况下的落锤冲击试验,获取CFRP的动态力学响应和损伤形式;步骤三、建立CFRP尺度模型,设置边界条件,进行细观参数影响分析;步骤四、计算放大因子,建立细观与宏观之间的关系,重建材料本构,更新宏观刚度矩阵;步骤五、进行CFRP层合板落锤冲击多尺度仿真,得到细观参数和基体缺陷对CFRP抗冲击力学性能的影响。通过仿真实验得到细观参数和基体缺陷对CFRP抗冲击力学性能的影响,能够模拟碳纤维复合材料的纤维与集体的力学响应与失效过程,得到碳纤维复合材料截面开裂、纤维集体破坏的过程。
-
公开(公告)号:CN108932364B
公开(公告)日:2019-09-03
申请号:CN201810480260.1
申请日:2018-05-18
Applicant: 吉林大学
IPC: G06F17/50
Abstract: 本发明公开了一种参数化的约束系统刚度设计方法,克服了逆向或者局部逆向设计方式难以满足现阶段对产品开发周期要求的问题,该方法的步骤如下:1)设定约束条件:(1)乘员胸部加速度限值G;G是正向设计时根据乘员保护要求提出的胸部加速度限值;(2)乘员最大相对位移Do/v;Do/v是总布置阶段已经确定好的乘员生存空间;(3)根据碰撞试验要求确定碰撞出速度v0及车体的双台阶波形的基本参数;2)定义简化曲线:(1)定义双台阶波;(2)定义梯形波;3)根据面积相等原理进行碰撞波形与约束系统刚度的耦合分析;4)引入振动方程求解乘员的相对运动响应;5)求解约束系统刚度;6)建立插值公式实现约束系统刚度的快速求解。
-
公开(公告)号:CN108647464B
公开(公告)日:2019-08-09
申请号:CN201810480248.0
申请日:2018-05-18
Applicant: 吉林大学
IPC: G06F17/50
Abstract: 本发明公开了概念设计阶段约束系统的设计方法,为克服传统设计方法中低水平重复寻优过程的问题,其步骤:1.确定输入条件:1)乘员胸部加速度限值G;2)车内生存空间S0;3)碰撞初速度v0;4)碰撞波形:在概念设计阶段,车体前端结构尚未设计完成,因此以幅值为A0的矩形波作为碰撞波形,tv的计算式为:式中:矩形波形中A0为矩形波幅值,tv为车体速度减为0的时刻,即停车时刻;2.简化曲线处理;3.约束刚度和碰撞波形的耦合作用分析;4.求解乘员相对运动响应和约束系统固有频率:1)引入振动方程;2)求解极限时间tL、极限相对速度vL、极限相对位移DL;3)求解约束系统固有频率ω;5.输出梯形约束刚度曲线。
-
公开(公告)号:CN109543229A
公开(公告)日:2019-03-29
申请号:CN201811239928.X
申请日:2018-10-24
Applicant: 吉林大学
IPC: G06F17/50
Abstract: 本发明属于汽车被动安全性研究领域,具体涉及一种变厚度十二直角截面薄壁梁压溃特性分析方法。包括以下步骤:1、将截面的边上任意处厚度使用参数表示出来;2、利用最大厚度、最小厚度,求出截面拐角处形成折叠单元的实际厚度;3、将不同区域的厚度带入到超级折叠单元不同区域的能量耗散计算公式,计算出变厚度超级折叠单元能量耗散;4、利用能量最低原理,求出变厚度超级折叠单元能量耗散表达式中的未知量;5、求解出平均压溃反力具体数值。本发明推导出了变厚度十二直角薄壁梁平均压溃反力解析表达式,可以在车身抗撞性概念设计阶段,实现对薄壁梁的正向设计,缩短开发周期。
-
公开(公告)号:CN107169235A
公开(公告)日:2017-09-15
申请号:CN201710445843.6
申请日:2017-06-14
Applicant: 吉林大学
CPC classification number: G06F17/5009 , G06F17/18
Abstract: 本发明公开了一种多参数碰撞波形质量评价方法,旨在克服现有技术在判断碰撞波形优劣时耗时耗财,且评判结果随意性较强的问题,方法的步骤为:1)详细波形处理模块由车体详细碰撞波形获得详细波形参数:(1)详细波形处理模块得到速度‑时间曲线;(2)详细波形处理模块再得到位移‑时间曲线;(3)从详细波形提取经验参数;2)等效双台阶波形化简模块简化车体详细碰撞波形及获得各特征参数;3)建立多参数碰撞波形评价准则图;4)信号输出模块给出评价结果即所述的中央处理模块(2)将信号处理模块(1)得到的碰撞波形特征参数值存入多参数波形评价准则图中,并将带有碰撞波形参数值的准则图输出到信号输出模块(3)中,即为评价结果。
-
公开(公告)号:CN111209704B
公开(公告)日:2022-10-21
申请号:CN202010011750.4
申请日:2020-01-07
Applicant: 吉林大学
IPC: G06F30/23 , G01N3/08 , G01N3/24 , G06F119/14
Abstract: 本发明属于汽车用复合材料研究领域,涉及一种基于偏轴拉伸的碳纤维复合材料动态剪切强度测试方法;包括以下步骤:1、进行动态拉伸试验;2、获得CFRP强度随应变率变化的函数表达式;3、将失效准则中强度值引入应变率的变量;4、确定不同应变率下剪切应力占主导的纤维角度;5、采用试验和有限元相结合的方法确定CFRP在不同应变率下的剪切强度。本发明进行动态拉伸试验,获得CFRP强度随应变率变化的函数表达式,将失效准则中强度值引入应变率的变量,确定不同应变率下剪切应力占主导的纤维角度,采用试验和有限元相结合的方法确定CFRP在不同应变率下的剪切强度;对考虑应变率效应的连续纤维增强复合材料动态剪切强度测试具有重要意义。
-
公开(公告)号:CN109543229B
公开(公告)日:2022-09-02
申请号:CN201811239928.X
申请日:2018-10-24
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/20 , G06F119/14 , G06F111/10
Abstract: 本发明属于汽车被动安全性研究领域,具体涉及一种变厚度十二直角截面薄壁梁压溃特性分析方法。包括以下步骤:1、将截面的边上任意处厚度使用参数表示出来;2、利用最大厚度、最小厚度,求出截面拐角处形成折叠单元的实际厚度;3、将不同区域的厚度带入到超级折叠单元不同区域的能量耗散计算公式,计算出变厚度超级折叠单元能量耗散;4、利用能量最低原理,求出变厚度超级折叠单元能量耗散表达式中的未知量;5、求解出平均压溃反力具体数值。本发明推导出了变厚度十二直角薄壁梁平均压溃反力解析表达式,可以在车身抗撞性概念设计阶段,实现对薄壁梁的正向设计,缩短开发周期。
-
公开(公告)号:CN111428394B
公开(公告)日:2022-05-31
申请号:CN202010126045.9
申请日:2020-02-27
Applicant: 吉林大学
Abstract: 本发明属于汽车被动安全性研究领域,涉及一种混合截面吸能盒及其设计方法;混合截面吸能盒沿轴向分为两段,上半段截面具有矩形外轮廓,如果没有肋板,则为单胞形截面,如果含有肋板,则组成多胞形截面;多胞形截面内部肋板与矩形外轮廓中的两条边相平行,平行于矩形外轮廓长方向的肋板数量等于平行于矩形外轮廓宽方向的肋板数量;上半截面任意相平行且相邻的两条线之间的距离相等,含有n个小胞的截面为n胞形截面;下半段截面比上半段在每个胞的内部增加了一个肋板,增加的肋板与胞的两条边相平行,位置处于与胞相平行的两条边的正中间;本发明增加了吸能盒底部抗弯能力,防止薄壁结构出现欧拉弯曲变形模式,提高薄壁结构吸能稳定性。
-
公开(公告)号:CN107577843B
公开(公告)日:2021-10-01
申请号:CN201710649471.9
申请日:2017-08-02
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/17 , G06F30/20 , G06F111/04 , G06F119/14
Abstract: 本发明公开了碰撞波形与约束系统特性耦合关系的评价方法,克服了CAE仿真技术在研究车体结构和乘员约束系统特性耦合关系时计算量庞大且费时的问题,步骤:1.基于单自由度模型的乘员响应面的建立:1)定义双梯形波和三线性约束刚度曲线的形状特征参数:2)单自由度模型求解乘员响应面;3)对响应面XY向分别求平均;2.乘员响应与碰撞波形参数相关性分析:1)碰撞波形参数定义补充;2)从乘员响应面中提取出碰撞波形基本参数与Av对应关系,进行线性回归分析;3.碰撞波形与约束系统特性耦合关系的评价:1)碰撞波形综合评价指标α的建立;2)约束系统综合评价指标β的建立;3)碰撞波形与约束系统特性综合评价指标的ao的建立。
-
公开(公告)号:CN107992668B
公开(公告)日:2021-06-29
申请号:CN201711212669.7
申请日:2017-11-28
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/20 , G06F111/04
Abstract: 本发明属于汽车碰撞安全技术领域,涉及一种基于双梯形波的碰撞波形概念设计方法,包括以下步骤:1、定义参数:定义车体前端结构的空间参数、双台阶波参数、双梯形波参数;2、设定约束条件:假设发动机前端的布置空间D10、发动机后端到防火墙的布置空间D20和车内乘员的生存空间S0全部用尽;3、引入双台阶波振动方程;4、求解双台阶波;5、求解双梯形波;本发明仅仅利用理论计算设计碰撞波形,节约了人力物力;本发明双梯形波的特征参数与车体结构参数相关联,为车体前端结构设计提供参考;本发明以车体和约束系统综合作用的乘员响应作为设计的约束条件,避免了碰撞波形与约束系统单独设计,为后期约束系统设计提供参考。
-
-
-
-
-
-
-
-
-