-
公开(公告)号:CN119612441A
公开(公告)日:2025-03-14
申请号:CN202411711802.3
申请日:2024-11-27
Applicant: 吉林大学
Abstract: 本发明提出了一种基于数字孪生的微纳米冲击压入测试仪运行监测系统,适用于精密仪器维护领域。系统通过数字孪生技术实现微纳米压入测试中的多物理场耦合建模,能够实时高精度监测仪器状态、预测故障并进行动态优化。系统集成高精度传感器,实时采集微小力、极高温度和纳米尺度位移等数据,构建数字孪生模型并映射仪器运行状态。借助机器学习算法对历史和实时数据进行分析,能准确预测潜在故障并提供维护建议,确保仪器在材料服役工况下的精度保持性和测试稳定性。交互中心提供可视化界面,支持实时监测、动态调整及预警功能,显著提升仪器的智能维护水平。本发明适用于材料科学、微纳米力学测试等领域,提供了一种创新的精密仪器智能管理方案。
-
公开(公告)号:CN112487635B
公开(公告)日:2022-03-08
申请号:CN202011352578.5
申请日:2020-11-26
Applicant: 吉林大学
IPC: G06F30/20 , B82Y30/00 , G06F119/14
Abstract: 本发明涉及一种基于马兰戈尼效应的仿生梯度超疏水结构设计方法,属于微纳结构功能表面设计与制备技术领域。根据疏水表面结构特征,构建单一表面阵列结构,结合Wenzel与Cassie模型计算该表面结构的接触角。构建具有相同参数的不同单一阵列结构,比较各结构模型的接触角大小,根据接触角大小构建结构序列,微调结构参数再构建结构序列形成连续的梯度复合阵列结构。在单一结构上安装纳米加热片,设定不同的温度值形成温度梯度,在结构梯度和温度梯度的耦合下,由于表面张力的变化,液滴从接触角大的表面自发的向接触角小的表面移动。马兰戈尼效应引起的表面张力差异促使液滴定向移动与自动滚落,从而实现自洁特性。
-
公开(公告)号:CN111870397A
公开(公告)日:2020-11-03
申请号:CN202010891062.1
申请日:2020-08-30
Applicant: 吉林大学
Abstract: 本发明涉及一种基于原位监测的仿生人工瓣膜抗凝性能测试装置,属于科学仪器与测试技术领域。包括介质驱动循环单元、原位监测单元、瓣膜温度控制单元和辅助单元,所述介质驱动循环单元通过单向阀与瓣膜温度控制单元的恒温水浴管刚性连接,瓣膜温度控制单元通过恒温水浴管与原位监测单元的输入端压力指示器刚性连接,原位监测单元通过输出端压力指示器与辅助单元的工作状态切换阀柔性连接,辅助单元通过工作状态切换阀与介质驱动循环单元的驱动泵柔性连接。优点在于:构思新颖,结构简单。可在测试循环试验过程中对仿生人工瓣膜试件表面血液凝固行为进行实时原位监测,可为仿生人工瓣膜抗凝性能试验提供在线测试。实用性强。
-
公开(公告)号:CN118518511B
公开(公告)日:2024-11-22
申请号:CN202410788296.1
申请日:2024-06-18
Applicant: 吉林大学
Inventor: 马志超 , 熊俊名 , 沈郭祥 , 武子沂 , 佟帅 , 郭子馨 , 张微 , 解鸿偲 , 孙嘉政 , 赵文洋 , 杨在正 , 李超凡 , 李沂澄 , 寇博艺 , 李傢楷 , 刘一帆 , 赵宏伟 , 任露泉
Abstract: 本发明公开了一种快速点阵式微纳米冲击压入测试系统,涉及材料微观力学测试技术领域。包括三维电动定位模块,三维电动定位模块包括XY平移台和Z轴升降台;点阵式冲击压入模块,点阵式冲击压入模块包括设于Z轴升降台上的三自由度压电平台,三自由度压电平台的一个表面设有压电陶瓷促动器,压电陶瓷促动器一端连接有压头;夹具,夹具夹持有待测试件,待测试件正对压头;成像模块,成像模块包括显微镜头,显微镜头用于观察拍摄待测试件。本系统不仅能够实现原位微纳米冲击压入测试,同时其能够实现快速点阵式压入,且压入的精度较高;同时,相对于现有技术,本发明采用直驱式结构驱动压头,冲击响应时间更短,速度更快,能够实现更高应变条件冲击。
-
公开(公告)号:CN112082851B
公开(公告)日:2024-06-18
申请号:CN202011175314.7
申请日:2020-10-28
Applicant: 吉林大学
Abstract: 本发明涉及一种软骨不规则表面力学性能测试的多自由度宏微驱动平台,属于精密驱动领域。包括宏微驱动模块、装夹模块、传感与检测模块;宏微驱动模块的六自由度宏观刚性驱动结构安装在底座上,三自由度微观驱动柔性球铰结构连接在六自由度宏观刚性驱动结构与装夹模块之间;通过六自由度宏观刚性驱动结构与三自由度微观驱动柔性球铰结构相互配合,实现平台刚柔耦合驱动;传感与检测模块固定安置在六自由度宏观刚性驱动结构的上移动板上,实时反馈精准调控并定位拟开展测试的微区。优点在于:探针不动且不破坏软骨结构的情况下测定完整的软骨的微观力学性能:软骨表面全局的硬度、杨氏模量与摩擦系数等力学性能的分布特性等性能图谱。
-
公开(公告)号:CN115598133B
公开(公告)日:2024-05-24
申请号:CN202211242646.1
申请日:2022-10-11
Applicant: 吉林大学
Abstract: 本发明涉及一种用于原位观测与力‑热‑磁多场调控的金属增材制造系统,属于金属增材制造技术领域。本发明包括原位监测单元和力‑热‑磁多物理场加载单元,将多光谱监测技术、多物理场实时调控技术、金属增材制造技术相融合,实现金属增材制造过程中对成型样品微区结构演化的同步观测,即对成型材料“形貌‑热场‑磁场‑应力‑成分‑缺陷”信息进行同步无损检测,获取材料成型行为与力学性能的相关性,进而调控熔池及熔融成型区域的温度、熔池内部的压力加载以及定向凝固的磁场强度,为进一步定向提高金属增材制造样品力学性能提供技术支撑。
-
公开(公告)号:CN116879002A
公开(公告)日:2023-10-13
申请号:CN202310854050.5
申请日:2023-07-12
Applicant: 吉林大学
Abstract: 本发明公开了一种高速载流摩擦原位测试系统,涉及精密仪器技术领域,包括宏微动力加载模块,恒力加载模块、电流加载模块、力监测模块和原位检测模块,宏微动力加载模块控制待测摩擦副的相对运动,电流加载模块用于在摩擦幅之间加载电流,原位监测模块包含了声发射,红外热成像和高速相机三种原位监测手段;本发明能支撑多角度多姿态宏‑微‑动‑静耦合高速载流摩擦等工况的测试,并同时能够获取温度场、光学、声学和震动的时序信息,进而可获取摩擦副热能、电弧强度、黏着磨损程度、疲劳磨损程度和摩擦副变形能的时序信息,有助于深入理解高速‑多工况载流摩擦幅的失效机制与改性机理,加速载流摩擦副的载流摩擦性能的寻优工作。
-
公开(公告)号:CN110946678A
公开(公告)日:2020-04-03
申请号:CN201911404701.0
申请日:2019-12-31
Applicant: 吉林大学
Abstract: 本发明涉及一种仿生多孔梯度人工髋关节基体的设计方法。该方法基于低密度区、中密度区和高密度区三种基本单元,分别构建具有有序多孔梯度特性的低密度区、中密度区和高密度区,通过三种单元的组合构建人工髋关节模型的基体部分。该方法以具有多孔梯度特性的骨关节基体为仿生模板,通过对具有不同结构、密度特性的三种基本单元的排列方式和空间布局进行仿生设计,可获取与未置换前的骨关节力学性能较为接近的仿生人工髋关节基体,可以有效避免以往人工关节置换术中的无菌性松动并发症,提高人工关节的服役寿命和可靠性。
-
公开(公告)号:CN119043933A
公开(公告)日:2024-11-29
申请号:CN202411187520.8
申请日:2024-08-28
Applicant: 吉林大学
Abstract: 一种力热电耦合多功能原位力学性能测试装置及方法,涉及材料性能测试设备技术领域,包括伺服电机、底板、位移检测组件、套筒、应变式力传感器、夹具,其中,底板上可移动设置有套筒,套筒为不相接触的两部分组成,在伺服电机的驱动下套筒的两部分能够相向或远离移动,套筒上可拆卸地设置有用于夹持试件的夹具,夹具由两部分组成,以一一对应的形式分别设置在套筒的的两部分上,夹具上分别设置加热片槽用于容纳陶瓷加热之间设置有陶瓷加热片;本发明中热加载组件采用高温陶瓷加热片发热构建温度场,能够对试件进行均匀加热,实现了在力‑热‑电耦合条件下对试件微观力学性能和变形行为过程的实时原位测试。
-
公开(公告)号:CN118518511A
公开(公告)日:2024-08-20
申请号:CN202410788296.1
申请日:2024-06-18
Applicant: 吉林大学
Inventor: 马志超 , 熊俊名 , 沈郭祥 , 武子沂 , 佟帅 , 郭子馨 , 张微 , 解鸿偲 , 孙嘉政 , 赵文洋 , 杨在正 , 李超凡 , 李沂澄 , 寇博艺 , 李傢楷 , 刘一帆 , 赵宏伟 , 任露泉
Abstract: 本发明公开了一种快速点阵式微纳米冲击压入测试系统,涉及材料微观力学测试技术领域。包括三维电动定位模块,三维电动定位模块包括XY平移台和Z轴升降台;点阵式冲击压入模块,点阵式冲击压入模块包括设于Z轴升降台上的三自由度压电平台,三自由度压电平台的一个表面设有压电陶瓷促动器,压电陶瓷促动器一端连接有压头;夹具,夹具夹持有待测试件,待测试件正对压头;成像模块,成像模块包括显微镜头,显微镜头用于观察拍摄待测试件。本系统不仅能够实现原位微纳米冲击压入测试,同时其能够实现快速点阵式压入,且压入的精度较高;同时,相对于现有技术,本发明采用直驱式结构驱动压头,冲击响应时间更短,速度更快,能够实现更高应变条件冲击。
-
-
-
-
-
-
-
-
-