一种基于YOLOv5的行车目标检测方法

    公开(公告)号:CN116311170A

    公开(公告)日:2023-06-23

    申请号:CN202310455559.2

    申请日:2023-04-25

    Abstract: 一种基于YOLOv5的行车目标检测方法,对数据图片目标标签标注,改进YOLOv5代码训练数据集完成对应类别概率、目标置信度、预测框坐标的测算,用以目标实时检测并以检测框标出;进行HSV三通道拆分,结合不同通道特征进行区域提取,完成对车道线的特征掩模后再将HSV三通道合并为BGR色彩空间,再迭代筛选确定车道线目标,再以此为更精确的掩模通过低要求的Canny边缘检测和Hough变换,做到对曲率车道线的应检尽检;在物体立于地面上的强假设上,用相机标定纠正透镜畸变,再用其参数建立相机成像几何模型,通过单目视觉来测量距离;利用YOLOv5得到运动目标检测框,结合距离检测算法和车道线检测完成路面目标检测软件。本方法提高了检测的准确性与实时性。

    一种融合双重注意力机制的单目3D目标检测方法

    公开(公告)号:CN115909266A

    公开(公告)日:2023-04-04

    申请号:CN202211367523.0

    申请日:2022-11-03

    Abstract: 一种融合双重注意力机制的单目3D目标检测方法,基于目标检测算法,融合通道注意力机制及空间注意力机制,提供有效聚焦,提升收敛速度,减少时延,可以更好地解决目标检测的精度问题,提高网络的可解释性,同时提升目标检测的性能。通过将通道注意力机制(channel attention)、空间注意力机制(spatial attention)两种注意力机制综合运用,聚焦输入图像的全局与局部的双重重要信息来提高单目3D目标检测的精度。该发明成本极低、便于推广使用,能够在自动驾驶、障碍物检测与定位中扮演非常重要的角色。

Patent Agency Ranking