-
公开(公告)号:CN113705885A
公开(公告)日:2021-11-26
申请号:CN202110988019.1
申请日:2021-08-26
Applicant: 南京理工大学
Abstract: 一种融合VMD、XGBoost及优化TCN的配电网电压预测方法及系统,属于配电网电压预测技术领域,解决如何提高现有技术中配电网电压预测精度低的问题;本发明的技术方案根据新能源接入配电网的情况、电压数据的特点,分别从数据采集、数据特征以及预测精度三个方面入手,采用VMD将电压时间序列分解为多个子信号模态,降低数据的非平稳性;利用XGBoost对影响电压的多个特征因素进行选择,避免单一特征重要性度量的局限性,优化输入TCN的数据,叠加预测结果实现电压预测输出,提高预测精度;三种算法的融合使得对配电网电压预测的误差更小,提高预测了的准确性和效率。
-
公开(公告)号:CN112564098A
公开(公告)日:2021-03-26
申请号:CN202011387165.0
申请日:2020-12-02
Applicant: 国网浙江省电力有限公司电力科学研究院 , 国网浙江省电力有限公司 , 南京理工大学
Abstract: 本发明公开了基于时间卷积神经网络的高比例光伏配电网电压预测方法,包括:步骤1,对原始负荷数据进行数据预处理:基于多时间尺度,采用最大最小区间缩放法对电压时间序列数据进行归一化处理,得到完整的电压序列;步骤2,构造输入特征向量集:基于决策树的极度梯度提升树算法进行特征筛选,构造训练样本集,输出各特征权重,结合权重大小和电压预测模型情况筛选出不同的特征子集;步骤3,建立基于含高比例光伏配电网电压预测构架,训练时间卷积网络预测模型,得到电压预测结果。本发明通过将提取到的特征与时间结合,输入时间卷积神经网络模型的不同通道,得出预测结果,从而达到显著升高配电网电压预测的精度的目的。
-
公开(公告)号:CN113705885B
公开(公告)日:2024-05-17
申请号:CN202110988019.1
申请日:2021-08-26
Applicant: 南京理工大学
IPC: G06Q10/0637 , G06Q50/06 , H02J3/00 , G06N3/0464 , G06N3/09
Abstract: 一种融合VMD、XGBoost及TCN的配电网电压预测方法及系统,属于配电网电压预测技术领域,解决如何提高现有技术中配电网电压预测精度低的问题;本发明的技术方案根据新能源接入配电网的情况、电压数据的特点,分别从数据采集、数据特征以及预测精度三个方面入手,采用VMD将电压时间序列分解为多个子信号模态,降低数据的非平稳性;利用XGBoost对影响电压的多个特征因素进行选择,避免单一特征重要性度量的局限性,优化输入TCN的数据,叠加预测结果实现电压预测输出,提高预测精度;三种算法的融合使得对配电网电压预测的误差更小,提高预测了的准确性和效率。
-
公开(公告)号:CN112564098B
公开(公告)日:2022-08-30
申请号:CN202011387165.0
申请日:2020-12-02
Applicant: 国网浙江省电力有限公司电力科学研究院 , 国网浙江省电力有限公司 , 南京理工大学
Abstract: 本发明公开了基于时间卷积神经网络的高比例光伏配电网电压预测方法,包括:步骤1,对原始负荷数据进行数据预处理:基于多时间尺度,采用最大最小区间缩放法对电压时间序列数据进行归一化处理,得到完整的电压序列;步骤2,构造输入特征向量集:基于决策树的极度梯度提升树算法进行特征筛选,构造训练样本集,输出各特征权重,结合权重大小和电压预测模型情况筛选出不同的特征子集;步骤3,建立基于含高比例光伏配电网电压预测构架,训练时间卷积网络预测模型,得到电压预测结果。本发明通过将提取到的特征与时间结合,输入时间卷积神经网络模型的不同通道,得出预测结果,从而达到显著升高配电网电压预测的精度的目的。
-
-
-