一种基于高空间分辨率数值模式的急流轴自动识别方法

    公开(公告)号:CN110413656B

    公开(公告)日:2021-05-18

    申请号:CN201910541278.2

    申请日:2019-06-20

    Inventor: 周婵 钱代丽 王晖

    Abstract: 本发明涉及一种基于高空间分辨率数值模式的急流轴自动识别方法,解决的是自动化程度低、精度低的技术问题,通过采用步骤一,采集基于高空间分辨率数值模式风场资料,对风场资料进行数据预处理,获得风向与风速;步骤二,定义急流判别标准,根据急流判别标准识别出急流区域;步骤三,在识别出的急流区域内,利用流线追踪算法追踪初选节点,对初选节点进行节点划分,包括进行急流节点计算、噪声节点剔除,识别出节点经纬度,根据节点经纬度识别出当前高度层的急流轴的技术方案,较好的解决了该问题,可用于急流轴识别中。

    一种基于高空间分辨率数值模式的急流轴自动识别方法

    公开(公告)号:CN110413656A

    公开(公告)日:2019-11-05

    申请号:CN201910541278.2

    申请日:2019-06-20

    Inventor: 周婵 钱代丽 王晖

    Abstract: 本发明涉及一种基于高空间分辨率数值模式的急流轴自动识别方法,解决的是自动化程度低、精度低的技术问题,通过采用步骤一,采集基于高空间分辨率数值模式风场资料,对风场资料进行数据预处理,获得风向与风速;步骤二,定义急流判别标准,根据急流判别标准识别出急流区域;步骤三,在识别出的急流区域内,利用流线追踪算法追踪初选节点,对初选节点进行节点划分,包括进行急流节点计算、噪声节点剔除,识别出节点经纬度,根据节点经纬度识别出当前高度层的急流轴的技术方案,较好的解决了该问题,可用于急流轴识别中。

    一种基于深度神经网络模型的三维雷达外推方法

    公开(公告)号:CN115755227B

    公开(公告)日:2023-04-14

    申请号:CN202310032172.6

    申请日:2023-01-10

    Abstract: 本发明公开了一种基于深度神经网络模型的三维雷达外推方法。该方法包括获取雷达基数据,并对所述雷达基数据进行质量控制处理,读取回波强度数据,并对回波强度数据进行预处理,以设定的时间间隔为一个单位构建3D雷达回波数据集,构建深度神经网络模型,将3D雷达回波数据集输入至构建好的深度神经网络模型中,以获得预报的回波强度。本发明将原先聚焦于二维的雷达回波外推,推广至三维的雷达回波外推,建立以仰角φ,方位角ω和径长γ为坐标系的空间结构,比以二维空间表达雷达回波特性更加符合雷达回波的实际情况,可以对雷达回波的生消变化进行有效的预报,并使模型更加符合拥有时序信息的三维回波数据结构。

    一种基于神经网络的卫星反演天气雷达反射率的方法

    公开(公告)号:CN115144835A

    公开(公告)日:2022-10-04

    申请号:CN202211069438.6

    申请日:2022-09-02

    Abstract: 本发明公开了一种基于神经网络的卫星反演天气雷达反射率的方法。该方法包括读取卫星多通道数据,将气象卫星的6.5um和7.1um通道数据辐射定标,将8.5um、10.8um、12um和13.5um通道数据辐射定标后计算对应通道的亮度温度,并获取卫星云掩膜数据,将组合反射率中的多层基本反射率投影到笛卡尔坐标系上,提取多层基本反射率的最大值作为空间分辨率为0.01°×0.01°格网的数值,将上述数据通过投影变换与空间插值到0.01°×0.01°的格点上,读取SRTM_DEM数据,并将其空间分辨率插值到上述格网上,然后数据匹配到雷达反射率覆盖的空间范围。本发明相对于传统的线性拟合方法能够有更好的效果。

Patent Agency Ranking