一种浆料挤出成形陶瓷零件表面整形方法及装置

    公开(公告)号:CN117445130A

    公开(公告)日:2024-01-26

    申请号:CN202311275050.6

    申请日:2023-09-28

    Abstract: 本发明属于增材制造相关技术领域,其公开了一种浆料挤出成形陶瓷零件表面整形方法及装置,方法包括:使用建模软件建立实体打印模型和整形路径模型,根据实体打印模型设置挤出单元的成形参数,根据整形路径模型设置整形单元的整形参数;挤出单元挤出成形参数设置的浆料层数后停止挤出,随后整形单元沿坯体表面轮廓运动,去除坯体表面的层纹缺陷,结束后继续挤出成形后续部分;重复上一步的过程,得到完整的陶瓷零件坯体,对坯体进行干燥、烧结,最终获得陶瓷零件。本发明还提供了相应的打印装置,装置设有多个挤出单元和整形单元,各单元可以独立控制、协同工作,可实现在浆料挤出的同时对其表面进行精修处理,提高浆料挤出陶瓷成形件表面精度。

    一种双金属铸件的铸造方法

    公开(公告)号:CN118875253B

    公开(公告)日:2025-04-15

    申请号:CN202410933980.4

    申请日:2024-07-12

    Abstract: 本发明提出了一种双金属铸件的铸造方法,包括:对固态嵌体的嵌体本体表面进行打磨、碱洗和酸洗处理后,通过铸型的浇注单元浇注液态金属;固态嵌体表面温度在浇注金属液相线±50℃范围内时,启动至少两个超声振动单元施加超声振动作用5~180s;固态嵌体表面温度在双金属复合材料界面形成温度以上0~50℃时,启动至少两个超声振动单元施加超声振动作用3~80s;待固态嵌体表面温度降至50~200℃,从浇注装置中取出凝固后的铸件,以获得双金属铸件。该方法克服了单一超声波声源作用范围存在局限的问题,可以同时提升双金属铸件的基体和界面的强度,超声振动机构的端部与固态嵌体之间设有间隙,超声振动机构不需要与固态嵌体进行谐振频率匹配设计,且避免了超声波发生器功率过载而损坏。

    一种提高微滴喷射成形可溶性型芯性能与精度的方法及可溶性型芯

    公开(公告)号:CN118492277B

    公开(公告)日:2025-01-21

    申请号:CN202410586297.8

    申请日:2024-05-13

    Abstract: 本发明涉及快速铸造领域,尤其涉及一种提高微滴喷射成形可溶性型芯性能与精度的方法及可溶性型芯。包括以下步骤:S1、将可溶性盐、改性剂和有机溶剂混合得到改性盐粉末,陶瓷粉和改性盐粉末混合形成混合粉料,采用微滴喷射成形工艺将混合粉料制备得到型芯初坯,经加热固化得到型芯坯体;S2、制备可溶性盐溶液,并向可溶性盐溶液中加入纳米陶瓷颗粒,混合得到浸渍液;S3、将型芯坯体进入浸渍液中进行浸渍处理,干燥后高温烧结,随炉冷却后得到可溶性型芯。采用微滴喷射粘结成形技术,以陶瓷粉+盐为原料制备可溶性型芯可实现型芯的高效脱除;对型芯坯体进行浸渗处理后,溶液中的盐和纳米陶瓷颗粒会填充坯体的孔隙,减小型芯的孔隙率,增加相对密度,防止烧结后的型芯产生过大的烧结收缩。

    一种双金属铸件的铸造装置及方法

    公开(公告)号:CN118875253A

    公开(公告)日:2024-11-01

    申请号:CN202410933980.4

    申请日:2024-07-12

    Abstract: 本发明提出了一种双金属铸件的铸造装置及方法,其中,双金属铸件的铸造装置包括铸型、固态嵌体和超声振动单元;铸型内形成有型腔;固态嵌体预置于型腔中;超声振动单元设置有至少两个,超声振动单元包括超声波发生器和超声振动机构,超声波发生器与超声振动机构连接,用于控制超声振动机构发生超声振动;超声振动机构安装于铸型上,至少两个超声振动机构的端部分布于固态嵌体的上方、下方和/或侧方,克服了单一超声波声源作用范围存在局限的问题,可以同时提升双金属铸件的基体和界面的强度,超声振动机构的端部与固态嵌体之间设有间隙,超声振动机构不需要与固态嵌体进行谐振频率匹配设计,且避免了超声波发生器功率过载而损坏。

    一种提高微滴喷射成形可溶性型芯性能与精度的方法及可溶性型芯

    公开(公告)号:CN118492277A

    公开(公告)日:2024-08-16

    申请号:CN202410586297.8

    申请日:2024-05-13

    Abstract: 本发明涉及快速铸造领域,尤其涉及一种提高微滴喷射成形可溶性型芯性能与精度的方法及可溶性型芯。包括以下步骤:S1、将可溶性盐、改性剂和有机溶剂混合得到改性盐粉末,陶瓷粉和改性盐粉末混合形成混合粉料,采用微滴喷射成形工艺将混合粉料制备得到型芯初坯,经加热固化得到型芯坯体;S2、制备可溶性盐溶液,并向可溶性盐溶液中加入纳米陶瓷颗粒,混合得到浸渍液;S3、将型芯坯体进入浸渍液中进行浸渍处理,干燥后高温烧结,随炉冷却后得到可溶性型芯。采用微滴喷射粘结成形技术,以陶瓷粉+盐为原料制备可溶性型芯可实现型芯的高效脱除;对型芯坯体进行浸渗处理后,溶液中的盐和纳米陶瓷颗粒会填充坯体的孔隙,减小型芯的孔隙率,增加相对密度,防止烧结后的型芯产生过大的烧结收缩。

Patent Agency Ranking