一种高分辨率磁编码器磁鼓的制备方法

    公开(公告)号:CN1297801C

    公开(公告)日:2007-01-31

    申请号:CN200410009427.4

    申请日:2004-08-13

    Abstract: 本发明提供了一种高分辨率磁编码器磁鼓的制备方法。采用涂布工艺,挤压成形制备磁鼓材料。将磁粉、粘结剂、稀释剂、固化剂、分散剂按比例混合制成磁浆,然后涂布于磁鼓基体上。将涂布后的磁鼓基体旋转固化。在磁浆处于半固化状态时,用高平整度的轴承挤压成形,达到0.15~0.4mm厚度。完全固化后,由高分辨率的光学编码器脉冲分频旋转充磁,可以对磁鼓写入128、256对极,倍频后可得到更高的分辨率。本发明的优点在于:工艺简单,操作性好,成品率高,易于批量生产。磁鼓充磁后,采用金属薄膜磁电阻传感探头检测磁鼓表面分布磁场。

    一种高性能光盘读取头用合金悬丝镀银的方法

    公开(公告)号:CN101736334B

    公开(公告)日:2011-10-12

    申请号:CN201010034187.9

    申请日:2010-01-15

    Abstract: 本发明提供了一种高性能光盘读取头用合金悬丝镀银的方法,属于金属材料领域,特别涉及一种电子元器件用金属功能材料,用于高性能的光学读取设备。通过表面除油、酸洗除氧化物、敏化、活化等预处理后,配制银盐溶液和还原溶液,通过化学反应在合金悬丝表面镀得银层。按该方法制得的镀银铜丝,可获得良好的导电性、可焊性及耐高温、抗氧化等优良特性,符合高性能光学读取头用悬丝的使用要求。本发明方法中没有毒性物质,而且不存在电镀工艺的环境污染问题,没有电镀工艺中电力线分布均匀与否的影响,镀层厚度均匀,结合力好,沉积效率高,适合于大规模的工业化生产。制备出的镀银铜丝满足高性能光学读取头力矩器用高品质悬丝的应用要求。

    一种高精度磁编码器用磁鼓的制备方法

    公开(公告)号:CN101046394B

    公开(公告)日:2010-07-21

    申请号:CN200710064729.5

    申请日:2007-03-23

    Abstract: 一种高精度磁编码器用磁鼓的制备方法,属于磁编码器技术领域。以铝合金为基体,以钴盐、还原剂、络合剂、缓冲剂按比例配成溶液,化学镀法制备Co-P或Co-Ni-P薄膜作为磁鼓的记录介质。薄膜中P含量为5~10%,为晶态,有磁性;膜厚为1~10μm。对用该法制得的磁鼓,可写入1024~2500对N、S磁极。本发明的优点在于:磁性薄膜磁性能优异,制备工艺稳定,实施性强,易于工业化批量生产;制得的磁鼓分辨率高,与各向异性磁电阻薄膜探头结合,可得到高精度的磁旋转编码器。

    一种高性能光盘读取头用合金悬丝镀银的方法

    公开(公告)号:CN101736334A

    公开(公告)日:2010-06-16

    申请号:CN201010034187.9

    申请日:2010-01-15

    Abstract: 本发明提供了一种高性能光盘读取头用合金悬丝镀银的方法,属于金属材料领域,特别涉及一种电子元器件用金属功能材料,用于高性能的光学读取设备。通过表面除油、酸洗除氧化物、敏化、活化等预处理后,配制银盐溶液和还原溶液,通过化学反应在合金悬丝表面镀得银层。按该方法制得的镀银铜丝,可获得良好的导电性、可焊性及耐高温、抗氧化等优良特性,符合高性能光学读取头用悬丝的使用要求。本发明方法中没有毒性物质,而且不存在电镀工艺的环境污染问题,没有电镀工艺中电力线分布均匀与否的影响,镀层厚度均匀,结合力好,沉积效率高,适合于大规模的工业化生产。制备出的镀银铜丝满足高性能光学读取头力矩器用高品质悬丝的应用要求。

    一种坡莫合金在线表面钝化方法

    公开(公告)号:CN101974746B

    公开(公告)日:2012-01-25

    申请号:CN201010271293.9

    申请日:2010-09-02

    Abstract: 本发明提供了一种环保、高效的坡莫合金在线表面钝化的方法,属于金属材料领域,用于提高坡莫合金表面的防锈蚀能力。通过表面除油清洗、钝化、烘干等处理,在坡莫合金表面获得一层致密的钝化膜,耐锈蚀时间比钝化前大大提高,膜层对坡莫合金本身的表面粗糙度、电磁及力学性能却无明显影响。本发明方法不同于以往的钝化等表面处理方法,不使用浓硫酸、浓硝酸等强酸,没有六价铬等毒性物质,可避免传统工艺的环境污染问题;另外,由于钝化时间短,一般只有几秒钟,适合于企业、工厂的在线生产,是一种高效、节能的表面钝化方法。

    一种坡莫合金在线表面钝化方法

    公开(公告)号:CN101974746A

    公开(公告)日:2011-02-16

    申请号:CN201010271293.9

    申请日:2010-09-02

    Abstract: 本发明提供了一种环保、高效的坡莫合金在线表面钝化的方法,属于金属材料领域,用于提高坡莫合金表面的防锈蚀能力。通过表面除油清洗、钝化、烘干等处理,在坡莫合金表面获得一层致密的钝化膜,耐锈蚀时间比钝化前大大提高,膜层对坡莫合金本身的表面粗糙度、电磁及力学性能却无明显影响。本发明方法不同于以往的钝化等表面处理方法,不使用浓硫酸、浓硝酸等强酸,没有六价铬等毒性物质,可避免传统工艺的环境污染问题;另外,由于钝化时间短,一般只有几秒钟,适合于企业、工厂的在线生产,是一种高效、节能的表面钝化方法。

    一种提高磁编码器磁鼓分辨率的方法

    公开(公告)号:CN1281925C

    公开(公告)日:2006-10-25

    申请号:CN200510011202.7

    申请日:2005-01-19

    Abstract: 本发明提供了一种提高磁编码器磁鼓分辨率的方法。采用涂布工艺,挤压成形制备磁鼓后,用精细抛光砂纸抛光磁性层,使磁性涂层减薄至0.1~0.05mm。再用窄漏磁间隙的磁头对磁鼓写入磁极,采用的窄漏磁间隙为0.1~0.05mm漏磁间隙的磁头对磁鼓进行充磁,写入磁极为512对极。本发明的优点在于,工艺精简,易于操作,可写入512对极,脉冲计数完整,输出波形信号良好,元器件性能优异。

    一种高精度磁编码器用磁鼓的制备方法

    公开(公告)号:CN101046394A

    公开(公告)日:2007-10-03

    申请号:CN200710064729.5

    申请日:2007-03-23

    Abstract: 一种高精度磁编码器用磁鼓的制备方法,属于磁编码器技术领域。以铝合金为基体,以钴盐、还原剂、络合剂、缓冲剂按比例配成溶液,化学镀法制备Co-P或Co-Ni-P薄膜作为磁鼓的记录介质。薄膜中P含量为5~10%,为晶态,有磁性;膜厚为1~10μm。对用该法制得的磁鼓,可写入1024~2500对N、S磁极。本发明的优点在于:磁性薄膜磁性能优异,制备工艺稳定,实施性强,易于工业化批量生产;制得的磁鼓分辨率高,与各向异性磁电阻薄膜探头结合,可得到高精度的磁旋转编码器。

    一种提高磁编码器磁鼓分辨率的方法

    公开(公告)号:CN1648610A

    公开(公告)日:2005-08-03

    申请号:CN200510011202.7

    申请日:2005-01-19

    Abstract: 本发明提供了一种提高磁编码器磁鼓分辨率的方法。采用涂布工艺,挤压成形制备磁鼓后,用精细抛光砂纸抛光磁性层,使磁性涂层减薄至0.1~0.05mm。再用窄漏磁间隙的磁头对磁鼓写入磁极,采用的窄漏磁间隙为0.1~0.05mm漏磁间隙的磁头对磁鼓进行充磁,写入磁极为512对极。本发明的优点在于,工艺精简,易于操作,可写入512对极,脉冲计数完整,输出波形信号良好,元器件性能优异。

    一种高分辨率磁编码器磁鼓的制备方法

    公开(公告)号:CN1598493A

    公开(公告)日:2005-03-23

    申请号:CN200410009427.4

    申请日:2004-08-13

    Abstract: 本发明提供了一种高分辨率磁编码器磁鼓的制备方法。采用涂布工艺,挤压成形制备磁鼓材料。将磁粉、粘结剂、稀释剂、固化剂、分散剂按比例混合制成磁浆,然后涂布于磁鼓基体上。将涂布后的磁鼓基体旋转固化。在磁浆处于半固化状态时,用高平整度的轴承挤压成形,达到0.15~0.4mm厚度。完全固化后,由高分辨率的光学编码器脉冲分频旋转充磁,可以对磁鼓写入128、256对极,倍频后可得到更高的分辨率。本发明的优点在于:工艺简单,操作性好,成品率高,易于批量生产。磁鼓充磁后,采用金属薄膜磁电阻传感探头检测磁鼓表面分布磁场。

Patent Agency Ranking