一种微合金化中碳铸钢件的制备方法

    公开(公告)号:CN111172468B

    公开(公告)日:2020-12-29

    申请号:CN202010097359.0

    申请日:2020-02-17

    Abstract: 一种微合金化中碳铸钢件的制备方法,属于钢铁材料加工技术领域。其特征在于对电弧炉或感应炉熔炼的微合金化中碳铸钢钢水在钢包内进行喂铝包芯线的终脱氧、喂硅‑钙‑稀土包芯线的夹杂物球化变质处理,以及铸型后铸钢件的均匀化处理和调质处理。经过上述处理制得的微合金化中碳铸钢件,其微观组织细小均匀,夹杂物尺寸小、形态以球形为主,且呈弥散分布。这些组织特征保证了该铸钢件不仅强韧性好,而且具有较高的硬度和耐磨性。由此表明,喂线处理有助于微合金化中碳铸钢的性能的进一步提高,减小了中碳铸钢在添加微合金化元素后带来的韧性降低。该铸钢件可用于对强韧性及其耐磨损性能有较高要求的结构件。推广应用具有良好的社会经济效益。

    一种微合金化中碳铸钢件的制备方法

    公开(公告)号:CN111172468A

    公开(公告)日:2020-05-19

    申请号:CN202010097359.0

    申请日:2020-02-17

    Abstract: 一种微合金化中碳铸钢件的制备方法,属于钢铁材料加工技术领域。其特征在于对电弧炉或感应炉熔炼的微合金化中碳铸钢钢水在钢包内进行喂铝包芯线的终脱氧、喂硅-钙-稀土包芯线的夹杂物球化变质处理,以及铸型后铸钢件的均匀化处理和调质处理。经过上述处理制得的微合金化中碳铸钢件,其微观组织细小均匀,夹杂物尺寸小、形态以球形为主,且呈弥散分布。这些组织特征保证了该铸钢件不仅强韧性好,而且具有较高的硬度和耐磨性。由此表明,喂线处理有助于微合金化中碳铸钢的性能的进一步提高,减小了中碳铸钢在添加微合金化元素后带来的韧性降低。该铸钢件可用于对强韧性及其耐磨损性能有较高要求的结构件。推广应用具有良好的社会经济效益。

    一种实现石墨化钢超塑性的处理方法

    公开(公告)号:CN111471844B

    公开(公告)日:2021-03-05

    申请号:CN202010256442.8

    申请日:2020-04-02

    Abstract: 一种实现石墨化钢超塑性的处理方法,属于钢铁材料加工技术领域。主要采用石墨化处理和等温十字锻造的处理方法来获得具有良好超塑性的石墨化钢。具体步骤为:首先在660℃~Ac1温度范围内对石墨化钢进行第一次石墨化处理;然后在对其进行温度为Ac3+30~50℃的等温十字锻造;最后在对其进行温度为620℃~660℃的第二次石墨化处理。按照上述方法处理的石墨化钢,其显微组织细小、均匀,且在等轴状的铁素体基体上弥散分布着近球形微细的石墨粒子与粒状渗碳体,满足超塑成形对显微组织的相关技术要求。因此,该钢在相变点Ac1以下10~30℃温度范围内,以及1~3×10‑3/s应变速率范围内进行拉伸变形时,其应变速率敏感指数m不小于0.36,延伸率不小于100%,即表现出良好的超塑性。

    一种实现石墨化钢超塑性的处理方法

    公开(公告)号:CN111471844A

    公开(公告)日:2020-07-31

    申请号:CN202010256442.8

    申请日:2020-04-02

    Abstract: 一种实现石墨化钢超塑性的处理方法,属于钢铁材料加工技术领域。主要采用石墨化处理和等温十字锻造的处理方法来获得具有良好超塑性的石墨化钢。具体步骤为:首先在660℃~Ac1温度范围内对石墨化钢进行第一次石墨化处理;然后在对其进行温度为Ac3+30~50℃的等温十字锻造;最后在对其进行温度为620℃~660℃的第二次石墨化处理。按照上述方法处理的石墨化钢,其显微组织细小、均匀,且在等轴状的铁素体基体上弥散分布着近球形微细的石墨粒子与粒状渗碳体,满足超塑成形对显微组织的相关技术要求。因此,该钢在相变点Ac1以下10~30℃温度范围内,以及1~3×10-3/s应变速率范围内进行拉伸变形时,其应变速率敏感指数m不小于0.36,延伸率不小于100%,即表现出良好的超塑性。

Patent Agency Ranking