-
公开(公告)号:CN117165830A
公开(公告)日:2023-12-05
申请号:CN202311444959.X
申请日:2023-11-02
Applicant: 北京科技大学
IPC: C22C33/04 , C21D8/00 , C21C5/52 , C21D1/26 , C21D1/18 , C22C38/38 , C22C38/04 , C22C38/02 , C22C38/06 , C22C38/28
Abstract: 本申请提供一种齿轮钢及其制备方法,涉及冶金领域。齿轮钢的制备方法包括:将纳米粒子与丙酮混合,搅拌得分散粒子;分散粒子与丙酮用液氮型行星球磨机进行预分散得预分散粉末;将预分散粉末、3‑氨基丙基三甲氧基硅烷和乙醇水溶液混合,加热反应、烘干得化学表面改性颗粒;将化学表面改性颗粒在惰性气体气氛下碳化处理得碳化处理颗粒;将齿轮钢原料用真空感应炉熔炼,全部熔化后在保护气氛下加入铁箔包裹的碳化处理颗粒,然后进行炉内浇铸得到铸锭;将铸锭在850‑1200℃温度区间使用锻‑拔‑锻工艺锻压;然后进行热处理得到目标齿轮钢。本申请提供的齿轮钢,利用晶粒细化提高钢的强韧性能,耐磨性能好。
-
公开(公告)号:CN116288073A
公开(公告)日:2023-06-23
申请号:CN202310581425.5
申请日:2023-05-23
Applicant: 北京科技大学
IPC: C22C38/60 , C22C38/48 , C22C38/46 , C22C38/44 , C22C38/42 , C22C38/04 , C22C38/02 , C21D6/02 , C22C33/04 , C21C7/00 , C21C7/076
Abstract: 本申请提供一种高耐蚀含碲不锈钢,涉及冶金领域。高耐蚀含碲不锈钢的制备方法包括依次进行的转炉冶炼、LF精炼、连铸和热处理;所述热处理包括:在1040℃‑1050℃下固溶处理30min‑35min后空冷,然后加热至480℃‑500℃进行时效处理,保温60min‑70min,随后空冷。本申请针对含Te不锈钢的热处理工艺问题,在提供极佳的Te含量配比工艺的同时,对含Te钢进行热处理,提出一种高效、低成本的Te处理方案,全面提高不锈钢的服役性能。
-
公开(公告)号:CN115870461B
公开(公告)日:2023-05-12
申请号:CN202310026918.2
申请日:2023-01-09
Applicant: 北京科技大学
Abstract: 本申请提供一种用于高、低碳钢快换的连铸结晶器及其设计方法和高、低碳钢快换连铸的方法,涉及冶金领域。用于高、低碳钢快换的连铸结晶器,其纵断面曲线为:。用于高、低碳钢快换的连铸结晶器的设计方法包括:根据连铸结晶器的纵断面曲线,得到连铸结晶器的弯液面下x处的锥度计算式:,获取不同高、低碳钢的凝固系数k,对工况条件下高、低碳钢连铸过程结晶器锥度曲线进行计算,得到多条锥度曲线;对多条锥度曲线进行拟合,得到最佳结晶器纵断面曲线,然后根据最佳结晶器纵断面曲线制作连铸结晶器。高、低碳钢快换连铸的方法,使用所述的用于高、低碳钢快换的连铸结晶器进行连铸。该连铸结晶器,不仅满足了快换的要求,还提高铸坯表面质量。
-
公开(公告)号:CN115161562A
公开(公告)日:2022-10-11
申请号:CN202211086695.0
申请日:2022-09-07
Applicant: 北京科技大学
Abstract: 本申请提供一种碲处理的铝脱氧钢及其制备方法,涉及合金领域。碲处理的铝脱氧钢,包括:C0.35%‑0.42%、Si0.20%‑0.45%、Mn0.30%‑0.60%、Al0.85%‑1.0%、S0‑0.02%、P0%‑0.02%、Cr1.35%‑1.65%、Mo0.17%‑0.25%、Te0.85%‑2%,其余为Fe和不可避免的杂质元素。碲处理的铝脱氧钢的制备方法,包括:将原料进行转炉冶炼和LF精炼,连铸得到所述碲处理的铝脱氧钢。本申请提供的碲处理的铝脱氧钢,生成碲化锰包裹氧化铝的复合夹杂物,避免了因氧化铝等高熔点夹杂物导致水口结瘤以及因为氧化铝夹杂导致应力集中,而引起服役寿命下降的问题。
-
公开(公告)号:CN112528527B
公开(公告)日:2021-08-24
申请号:CN202110173195.X
申请日:2021-02-09
Applicant: 北京科技大学
IPC: G06F30/20 , G06F30/28 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种模拟分析电弧等离子体的装置和方法,涉及到分析冶金行业中电弧等离子体预测方法。具体实施方式包括:建模模块;激活模块;第一设置模块;第二设置模块,至少设置两个入口速度;配置模块,用于配置求解器,并使求解器动态连接控制方程;求解模块用于利用求解器对每个入口速度对应的模拟数据进行求解计算得到模拟结果;处理模块用于处理模拟结果生成不同入口速度对应的电弧温度分布图和电弧中心轴线速度分布图。该实施方式能够模拟真实电弧的形成过程,实现对不同入口速度的电弧等离子体的分布特征进行研究,避免了实际操作测量电弧特征的困难性,提高了工程应用的效率。
-
公开(公告)号:CN112792331B
公开(公告)日:2021-06-25
申请号:CN202110364740.3
申请日:2021-04-06
Applicant: 北京科技大学
Abstract: 本发明涉及一种在浇注过程中钢包底吹氩气的方法及系统和应用。所述方法为:将钢包置于浇注位进行浇注;钢包内含有钢液和精炼渣,精炼渣置于钢液的上方;在浇注过程中,实时监测钢液面高度和精炼渣厚度,并根据精炼渣厚度、精炼渣表面张力以及钢液面高度和精炼渣厚度之和与钢包的整体深度之比(Hsteel+Hslag)/H动态调控底吹氩气的流量;当(Hsteel+Hslag)/H<0.25时,停止底吹氩气。本发明在保证钢液不卷渣情况下强化浇注过程钢包熔池搅拌,强制了钢液净化,改善了钢液质量;本发明解决了现有钢包底吹氩工艺时间长,钢包浇注过程中功能单一的问题,降低了生产工艺时间,节约了生产成本。
-
公开(公告)号:CN112458236B
公开(公告)日:2021-04-30
申请号:CN202110121970.7
申请日:2021-01-29
Applicant: 北京科技大学
IPC: C21C7/064
Abstract: 本发明涉及一种钢液精炼深脱硫的方法及用于钢液精炼的装置和应用。所述方法为:S1、将待精炼钢液出钢至钢包中并往装有待精炼钢液的所述钢包内加入冶炼材料,得到待精炼钢料;S2、根据出钢时待精炼钢液的初始硫含量[S]进和目标硫含量[S]目,确定将待精炼钢料进行钢液精炼时石灰粉喷吹、碳粉喷吹和顶吹氩气喷吹的工艺参数;S3、对待精炼钢料进行钢液精炼;在钢液精炼时,通过中空电极往所述待精炼钢料中喷吹石灰粉‑碳粉‑氩气混合粉气流以使钢液深脱硫。本发明通过中空电极动态喷吹石灰粉和碳粉进行深脱硫,既能保证钢液合理脱碳脱硫,改善脱硫动力学条件,提高脱硫效率,缩短冶炼时间,又能降低电耗和电极的损耗,使生产成本降低。
-
公开(公告)号:CN112036101A
公开(公告)日:2020-12-04
申请号:CN202011206338.4
申请日:2020-11-03
Applicant: 北京科技大学
IPC: G06F30/28 , C21C5/52 , G06F113/08 , G06F119/08
Abstract: 本发明提供一种电弧炉炼钢熔池模拟装置、模拟系统和使用其模拟测量熔池内熔体温度的方法。电弧炉炼钢熔池热量混匀模拟装置,包括模拟熔池、顶吹气体喷嘴、侧吹气体喷嘴、底吹气体喷嘴和测温元件。电弧炉炼钢熔池热量混匀模拟系统包括模拟装置以及容纳于容置空间中的流体。模拟测量熔池内熔体温度的方法,包括:将所述流体加入模拟熔池内,静置分层后通过顶吹气体喷嘴和侧吹气体喷嘴向水溶液中输入水蒸气,通过底吹气体喷嘴向水溶液中输入气体;记录测温元件测得的温度值,得到温度随时间变化的关系。本申请提供的模拟装置和系统,可以有效模拟测量电弧炉炼钢熔池熔体温度的情况,为生产提供理论依据和指导。
-
公开(公告)号:CN111893343A
公开(公告)日:2020-11-06
申请号:CN202010788594.2
申请日:2020-08-07
Applicant: 北京科技大学
Abstract: 本发明提供了一种改性纳米粒子弥散强化铜合金及其制备方法和应用、电子元件、机械元件。该改性纳米粒子弥散强化铜合金包括铜和分散在铜内的改性纳米粒子,所述改性纳米粒子包括纳米粒子和包覆在纳米粒子表面的聚多巴胺。该铜合金的制备方法包括以下步骤:(a)将纳米粒子和盐酸多巴胺在碱性条件下反应,得到改性纳米粒子;(b)将改性纳米粒子加入到铜液中,混合均匀,然后浇铸,得到所述改性纳米粒子弥散强化铜合金。上述制备方法工艺科学、简单,无需使用特殊的机械设备,易于实现,生产成本低,能大大缩短生产工艺流程,应用范围广,满足使用要求,实用性强,得到的效果明显且稳定,适合工业化大规模生产。
-
公开(公告)号:CN110057864B
公开(公告)日:2020-02-07
申请号:CN201910380953.8
申请日:2019-05-08
Applicant: 北京科技大学
Abstract: 本发明提供了一种钢液在水口通道内加热过程的模拟装置,其特征在于:包括钢包模型、中间包模型、金属质长水口、加热装置、电导率监测装置、温度监测装置、示踪剂加入装置,所述钢包模型在所述中间包模型上方,所述金属质长水口按照实际钢包与长水口位置关系安装在钢包模型底部,所述加热装置安装在金属质长水口处,所述示踪剂加入装置位于所述金属质长水口上方,所述中间包模型包括至少一个出水口,所述电导率监测装置位于所述出口处。该装置能够真实模拟出长水口加热过程对中间包内钢液温度和流动混匀的影响规律;以中间包流体加热效果和混匀效果为评估指标,通过设计不同的加热参数可以获得实际连铸生产中长水口加热工艺所需要的最佳加热时间和加热速率。
-
-
-
-
-
-
-
-
-