-
公开(公告)号:CN118341982A
公开(公告)日:2024-07-16
申请号:CN202410477670.6
申请日:2024-04-19
Applicant: 北京科技大学
IPC: B22F9/10 , B22F1/142 , B22F10/28 , B22F10/64 , C22C38/52 , C22C38/44 , C22C38/02 , B33Y10/00 , B33Y40/10 , B33Y40/20 , B33Y70/00 , C21D6/00
Abstract: 本发明提供一种提高激光增材制造马氏体时效钢强韧化的方法,涉及马氏体时效钢制备的技术领域。所述方法包括依次进行的激光增材制造的粉末制备、激光增材制造的粉末热处理、打印工艺参数选择、打印工艺参数的调整、打印件试样热处理、热处理工艺参数的调整和打印最终成品。本发明方法对热处理工艺参数进行优选,使得选区激光熔化打印的马氏体不锈钢能够获得细等轴晶和柱状晶构成的双态组织,且等轴晶尺寸小于1μm。本发明通过对激光增材制造粉末的成分含量选择和热处理工艺参数进行优选,工艺步骤简单、操作方便、处理周期短、易于控制,获得的马氏体+回复奥氏体双向组织能够协同提高强塑性,强塑性匹配关系良好,有利于工业化生产。
-
公开(公告)号:CN115274000A
公开(公告)日:2022-11-01
申请号:CN202210669296.0
申请日:2022-06-14
Applicant: 北京科技大学
IPC: G16C20/20 , G16C20/70 , G06F30/27 , B22F10/28 , B22F10/85 , B33Y10/00 , B33Y50/02 , C22C38/02 , C22C38/04 , C22C38/44 , C22C38/46 , C22C38/52 , G06F113/10 , G06F119/08
Abstract: 本发明公开一种增材制造用合金成分优化设计方法,属于增材制造的技术领域。所述增材制造用合金成分优化设计方法在已有的合金成分基础之上,将合金成分的含量数值范围扩展到包括所有已有的合金成分含量,结合热力学计算和高通量计算,基于热裂敏感性指标,根据应变率热裂判据优化出合适的合金成分,按照优化后的合金成分制备增材制造用合金粉末,进行激光增材制造,对增材制造后的试样进行微观组织结构观察和性能测试,从中选择出符合实际合金性能的成分优化。本发明将合金成分优化设计作为主要影响因素,采用热力学软件和计算机语言相结合通过热裂敏感性指标来优选成分降低增材制造合金的热裂敏感性,利于工业大规模生产和推广使用。
-
公开(公告)号:CN115058625A
公开(公告)日:2022-09-16
申请号:CN202210602412.7
申请日:2022-05-30
Applicant: 北京科技大学
Abstract: 本发明公开一种双析出相强化的镍基涡轮盘高温合金及制备方法,属于镍基涡轮盘用高温合金的技术领域。所述镍基涡轮盘高温合金的化学成分按原子百分比例为:Al:5.0~6.0at.%,V:8.5~13.0at.%,Nb:7.5~9.5at.%,Cr:10.0~15.0at.%,其余为Ni。本发明通过成分和热处理的选择,制备的镍基涡轮盘高温合金具有γ'摩尔分数为10.01~23.12mol%,γ”摩尔分数为22.01~28.12mol%,有害相摩尔分数为0mol%,在1000℃具有较高的屈服强度外,优秀的组织稳定性和良好的抗氧化性能。
-
公开(公告)号:CN103752836A
公开(公告)日:2014-04-30
申请号:CN201410019961.7
申请日:2014-01-16
Applicant: 北京科技大学
Abstract: 本发明采用真空感应熔炼+氢化处理+等离子球化技术制备细粒径球形铌钛基合金粉末。首先采用真空感应熔炼技术制备铌钛基合金铸锭,解决纯净化熔炼的问题,设法减少非金属夹杂的数量和尺寸,并进行均匀化热处理,获得合金成分均匀的铸锭。然后对铸锭进行氢化处理,获得吸氢铌钛合金粉末。吸氢铌钛合金粉末经过筛分后进行等离子球化,在球化过程中优化输出功率、送粉速率和气流速率,避免空心粉形成,提高细粉收得率。从而得到分散性和流动性良好、粒度均匀的球形粉末。最终制备出粒径细小、成分均匀、流动性好、球化率高、氧含量低的铌钛基合金粉末。该粉末适用于注射成形、快速成形和热喷涂技术领域。
-
公开(公告)号:CN119040727A
公开(公告)日:2024-11-29
申请号:CN202411145677.4
申请日:2024-08-20
Applicant: 北京科技大学
IPC: C22C33/04 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/22 , C22C38/24 , C22C38/30 , B22D18/06 , C21D3/00 , C21D1/18 , C21D6/00
Abstract: 本发明提供一种细化高速钢铸态组织的方法,涉及高速钢铸锭制备的技术领域。所述细化高速钢铸态组织的方法包括原料配比、原料称量、原料熔炼、吸铸成型、退火处理和回火处理。高速钢材料按元素质量百分比计为:C 0.8‑1.3%,W 2‑10.0%,Mo 2.0‑9.0%,Cr 4.0‑5.0%,V 1‑3.0%,Co 1.5‑8.0%,Si 0‑1.5%,Mn 0.2‑0.4%,Al 0‑1.8%,余量为铁和不可避免的杂质元素。本发明通过制备方法选择和以氧化物代替部分碳化物形成元素加入的选择,使得高速钢对硅和氧化钼的原料的利用率较高,降低了传统制备成本,热能耗费量小;制备的高速钢的一次碳化物经过多重细化,提高了材料的韧性、硬度和红硬性,后续可加工性强,熔炼精炼过程简单,操作难度低,流程短,效率高,利于工业大规模生产和推广。
-
公开(公告)号:CN118332952B
公开(公告)日:2024-11-19
申请号:CN202410460976.0
申请日:2024-04-17
Applicant: 北京科技大学
IPC: G06F30/28 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种全尺寸烧结炉全流程烧结过程的模拟方法,包括:建立氢气热流模型,建立流体区域的几何模型,并设置氢气的材料属性,以及流体区域的边界条件;建立烧结炉热传导模型,定义关键部件的材料属性、组装部件、设置分析类型和边界条件、处理热辐射,对流和热传导传热、进行网格划分、提交计算和后处理;建立烧结坯热机耦合模型,将烧结炉热传导模型中的部件和属性拷贝到热机耦合模型,设置烧结坯的材料属性和相互作用属性,模拟烧结坯的演变过程。经过计算和后处理,得到烧结坯的形变,温度场、应力场和应变场。本发明的优点是:全面模拟烧结过程中的气体流动、温度分布和热变形等关键参数,为烧结工艺的优化和控制提供了重要参考。
-
公开(公告)号:CN117993202A
公开(公告)日:2024-05-07
申请号:CN202410177639.0
申请日:2024-02-08
Applicant: 北京科技大学
IPC: G06F30/20 , G06V20/69 , G06V10/30 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明涉及材料显微组织模拟技术领域,公开了一种基于扩散模型的材料显微组织演变模拟方法,包括以下步骤:获取显微组织原始图片;对显微组织原始图片进行预处理得到显微组织图片;基于材料显微组织演变模拟选择模型训练算法,对模型进行模型设置和提示词工程,基于扩散模型和画像生成人工智能进行模型训练,利用训练生成的模型对显微组织图片进行演变模拟以得到多个不同时刻的显微组织预测图;基于显微组织预测图进行模型可靠性验证,响应于通过可靠性验证后,输出显微组织预测图。本发明利用预测材料显微组织演变的模型,实现基于扩散模型的材料显微组织演变模拟方法,为材料组织演变模拟提供新方法。
-
公开(公告)号:CN117961087A
公开(公告)日:2024-05-03
申请号:CN202311614096.6
申请日:2023-11-29
IPC: B22F10/28 , B22F9/04 , B22F1/052 , B33Y10/00 , B33Y70/10 , B33Y40/10 , B22F1/065 , B22F1/16 , B22F1/14 , C22C1/053 , C22C29/14 , B22F10/34
Abstract: 本发明提供一种MoCoB‑Co金属陶瓷选区激光熔化增材制造方法,涉及金属陶瓷粉末冶金的技术领域。所述MoCoB‑Co金属陶瓷选区激光熔化增材制造方法如下所示:称量选区激光熔化增材制造金属陶瓷单质粉末;将称量好的金属陶瓷单质粉末进行球磨混合,筛分干燥后得到金属陶瓷混合粉末;将金属陶瓷混合粉末放入料仓,激光熔化增材制造的打印前需要对不锈钢基板表面进行预处理;打印前将基板预热,抽真空,氮气气氛保护,开始打印,获得预定尺寸试样后随仓冷却,得到金属陶瓷。本发明通过采用金属单质粉末及单质B进行球磨制备流动性好的金属陶瓷粉末,提高了选区激光熔化打印金属陶瓷材料的致密度和力学性能,利于工业大规模生产。
-
公开(公告)号:CN111104763A
公开(公告)日:2020-05-05
申请号:CN202010006979.9
申请日:2020-01-03
Applicant: 北京科技大学
IPC: G06F30/23 , G06F119/14 , G06F119/08
Abstract: 本发明提供一种铝合金半连续铸件缺陷倾向预测方法及装置,能够准确预测铝合金半连续铸件的缺陷倾向。所述方法包括:将铝合金成分和热力学计算得到的铝合金热物性参数输入到铝合金半连续铸造模型中,通过高通量有限元数值模拟得到多种工艺条件下铝合金半连续铸件的元素偏析最大值、缩松判据Niyama最大值和热裂指数最大值;根据得到的铝合金半连续铸件的元素偏析最大值、缩松判据Niyama最大值和热裂指数最大值预测铝合金半连续铸件的缺陷倾向。本发明涉及铝合金铸造技术领域。
-
公开(公告)号:CN107904474A
公开(公告)日:2018-04-13
申请号:CN201711065933.9
申请日:2017-11-02
Applicant: 北京科技大学
CPC classification number: C22C29/14 , B22F2998/10 , C22C1/058 , C22C29/005 , B22F2009/043 , B22F3/02
Abstract: 本发明一种钼钴硼三元硼化物基金属陶瓷材料及其制备方法,工艺为:以单质的钼粉、钴粉和硼粉为原料,经过球磨混合、干燥、成形和烧结制得了三元硼化物基金属陶瓷,主相为正交结构的MoCoB型双硼化物,其中含有的硬质相为两种相似稳定存在的MoCoB相,结相为Co或CoB化合物及其二者固溶物。本发明在配比中增加硼含量(原子比B/Mo>1.1),降低了三元体系液相出现的温度,降低烧结温度,简化制备工艺降低成本,低温的烧结能够获得更优异的物相结构,避免晶粒的取向生长。其洛氏硬度不低于83.5HRA。可以作为切削工具,模具材料,结构件或者耐磨件材料,提高了金属的韧性,硬度以及耐磨性,抗氧化能力强,化学性质稳定。
-
-
-
-
-
-
-
-
-