-
公开(公告)号:CN102142482A
公开(公告)日:2011-08-03
申请号:CN201110004415.2
申请日:2011-01-10
Applicant: 北京科技大学
IPC: H01L31/18 , H01L31/108 , H01L31/0224 , B81C1/00
CPC classification number: Y02P70/521
Abstract: 本发明提供了一种肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法,具体工艺为:先在清洗干净的FTO导电玻璃上生长ZnO纳米阵列;接着,在生长优良的ZnO纳米阵列上旋涂PMMA光刻胶,使光刻胶渗透入阵列的间隙;然后进行前烘,使胶与阵列紧密粘连;前烘后进行氧等离子体刻蚀,刻蚀掉阵列端部的PMMA光刻胶,便于下一步的电极沉积;用真空镀膜机进行金属电极的沉积,厚度为50~100nm;退火处理一下使电极与ZnO纳米阵列更好地接触;最后,从Pt电极和FTO电极上引出铜导线就可以进行光电性能测试。本发明的优点在于:制备出的器件紫外光可以从背面照射,结构简单,成本低廉,性能稳定,为以后的实际应用提供了可能。
-
公开(公告)号:CN101045553A
公开(公告)日:2007-10-03
申请号:CN200710065217.0
申请日:2007-04-06
Applicant: 北京科技大学
Abstract: 一种锡掺杂氧化锌纳米线的制备方法,属于纳米材料制备技术领域。工艺为:将硅(100)基片用清洗剂冲洗干净,作为沉积基片;将ZnO粉、SnO粉和C粉按一定的摩尔比充分混合均匀,混粉工艺可利用球磨的方法,并将混合粉末作为反应源放置于瓷舟中;把承载反应源和基片的瓷舟放入管式炉中的石英管中部,调节流量计向石英管中通入氩气和氧气的混合气体,总流量为300~350cm3/min,氧气比例为1~2%,在此气氛下将管式炉升温至合成温度850~950℃,然后保温,反应结束后,取出硅片冷却至室温,所得产品即为锡掺杂氧化锌纳米线。优点在于:实现了掺锡氧化锌纳米线的制备,制备工艺较简单,并保证产品质量高、可控性好,具备规模化生产的前景。
-
公开(公告)号:CN1810649A
公开(公告)日:2006-08-02
申请号:CN200610011356.0
申请日:2006-02-23
Applicant: 北京科技大学
IPC: C01G9/02
Abstract: 本发明提供了一种低温制备掺锰氧化锌纳米线稀磁半导体的方法,属于纳米材料制备技术领域。工艺步骤为:首先将硅片用金刚石刀裁剪成小片,放到培养皿中;取纯锌粉和氯化锰粉末以1∶1至1∶3的重量比混合;在管式炉中反应,得到硅片上沉积上一层浅黄色的产物;用扫描电子显微镜观察硅片上沉积的为纳米线。本发明的优点在于:用这种制备方法所做出的一维掺锰氧化锌纳米线的直径在50nm,表面平滑,而且产量比较高,表现出良好的磁学性能。
-
公开(公告)号:CN102142482B
公开(公告)日:2012-07-25
申请号:CN201110004415.2
申请日:2011-01-10
Applicant: 北京科技大学
IPC: H01L31/18 , H01L31/108 , H01L31/0224 , B81C1/00
CPC classification number: Y02P70/521
Abstract: 本发明提供了一种肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法,具体工艺为:先在清洗干净的FTO导电玻璃上生长ZnO纳米阵列;接着,在生长优良的ZnO纳米阵列上旋涂PMMA光刻胶,使光刻胶渗透入阵列的间隙;然后进行前烘,使胶与阵列紧密粘连;前烘后进行氧等离子体刻蚀,刻蚀掉阵列端部的PMMA光刻胶,便于下一步的电极沉积;用真空镀膜机进行金属电极的沉积,厚度为50~100nm;退火处理一下使电极与ZnO纳米阵列更好地接触;最后,从Pt电极和FTO电极上引出铜导线就可以进行光电性能测试。本发明的优点在于:制备出的器件紫外光可以从背面照射,结构简单,成本低廉,性能稳定,为以后的实际应用提供了可能。
-
公开(公告)号:CN100465344C
公开(公告)日:2009-03-04
申请号:CN200710065219.X
申请日:2007-04-06
Applicant: 北京科技大学
Abstract: 一种制备掺钴氧化锌纳米阵列的方法,属于纳米材料制备技术领域。工艺步骤为:首先将硅片用金刚石刀裁剪成片,放到培养皿中;取纯锌粉和氯化钴粉末以1∶1至1∶2的重量比混合;在管式炉中反应,得到硅片上沉积上一层浅灰色的产物;用扫描电子显微镜观察硅片上沉积的为纳米阵列。本发明的优点在于:制备方法简单,成本低,可控可靠性高。制备温度较低,整个制备过程不需要任何催化剂作用。优点在于,所做出的一维掺钴氧化锌纳米阵列,表面平滑,生长均匀,可作为场发射性能应用及低温磁学器件应用的理想材料。
-
公开(公告)号:CN101033547A
公开(公告)日:2007-09-12
申请号:CN200710065219.X
申请日:2007-04-06
Applicant: 北京科技大学
Abstract: 一种制备掺钴氧化锌纳米阵列的方法,属于纳米材料制备技术领域。工艺步骤为:首先将硅片用金刚石刀裁剪成片,放到培养皿中;取纯锌粉和氯化钴粉末以1∶1至1∶2的重量比混合;在管式炉中反应,得到硅片上沉积上一层浅灰色的产物;用扫描电子显微镜观察硅片上沉积的为纳米阵列。本发明的优点在于:制备方法简单,成本低,可控可靠性高。制备温度较低,整个制备过程不需要任何催化剂作用。优点在于,所做出的一维掺钴氧化锌纳米阵列,表面平滑,生长均匀,可作为场发射性能应用及低温磁学器件应用的理想材料。
-
公开(公告)号:CN1321900C
公开(公告)日:2007-06-20
申请号:CN200510086564.2
申请日:2005-10-08
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高产量掺铟ZnO纳米盘的方法,属于纳米材料制备技术领域。具体工艺为:将硅(100)基片用去离子水和酒精分别冲洗干净,作为沉积基片;将Zn粉、In2O3粉和C粉按摩尔比Zn∶In2O3∶C=1∶1∶2~3∶1∶2混合,充分研磨均匀并将其置于瓷舟中,研磨时间20~30分钟,之后将硅基片倒扣于瓷舟上;把瓷舟放入管式炉中的石英管中部,调节流量计向管中通入氩98%/氧2%混合气体300标准立方厘米/分钟。在此气氛下将管式炉升温至870~900℃并保温20~25分钟,冷却至室温,所得产品是掺铟氧化锌纳米盘。本发明的优点在于:首次制备出In/ZnO六边形纳米盘和十二边形纳米盘,在没有催化剂的条件下,实现了大范围的可控生长。
-
公开(公告)号:CN1821053A
公开(公告)日:2006-08-23
申请号:CN200610011195.5
申请日:2006-01-13
Applicant: 北京科技大学
IPC: B82B3/00 , C23C16/455
Abstract: 本发明提供了一种低温无催化剂气相沉积制备四针状氧化锌纳米棒的方法,属于纳米材料制备技术领域。工艺为:将硅(100)基片用去离子水和酒精分别冲洗干净,作为沉积基片;将Zn粉放置于瓷舟中,然后将硅基片倒扣于瓷舟上,把瓷舟放入管式炉中的石英管中部,使用流量计调节通入石英管中的氩气和氧气的总流量及两种气体的比例。在此气氛下将管式炉升温至600℃~700℃,然后保温20~25分钟,之后取出硅片,其上沉积的白色绒状物即为所需产品。本发明的优点在于:实现了无催化剂、低温制备四针状ZnO纳米棒,并保证产品质量高、可控性好、形貌丰富,具备规模化生产的前景。
-
公开(公告)号:CN1821053B
公开(公告)日:2011-01-19
申请号:CN200610011195.5
申请日:2006-01-13
Applicant: 北京科技大学
IPC: B82B3/00 , C23C16/455
Abstract: 本发明提供了一种低温无催化剂气相沉积制备四针状氧化锌纳米棒的方法,属于纳米材料制备技术领域。工艺为:将硅(100)基片用去离子水和酒精分别冲洗干净,作为沉积基片;将Zn粉放置于瓷舟中,然后将硅基片倒扣于瓷舟上,把瓷舟放入管式炉中的石英管中部,使用流量计调节通入石英管中的氩气和氧气的总流量及两种气体的比例。在此气氛下将管式炉升温至600℃~700℃,然后保温20~25分钟,之后取出硅片,其上沉积的白色绒状物即为所需产品。本发明的优点在于:实现了无催化剂、低温制备四针状ZnO纳米棒,并保证产品质量高、可控性好、形貌丰富,具备规模化生产的前景。
-
公开(公告)号:CN100386884C
公开(公告)日:2008-05-07
申请号:CN200610011356.0
申请日:2006-02-23
Applicant: 北京科技大学
IPC: H01L29/12
Abstract: 本发明提供了一种低温制备掺锰氧化锌纳米线稀磁半导体的方法,属于纳米材料制备技术领域。工艺步骤为:首先将硅片用金刚石刀裁剪成小片,放到培养皿中;取纯锌粉和氯化锰粉末以1∶1至1∶3的重量比混合;在管式炉中反应,得到硅片上沉积上一层浅黄色的产物;用扫描电子显微镜观察硅片上沉积的为纳米线。本发明的优点在于:用这种制备方法所做出的一维掺锰氧化锌纳米线的直径在50nm,表面平滑,而且产量比较高,表现出良好的磁学性能。
-
-
-
-
-
-
-
-
-