基于无模型回归强化学习的机器人系统控制方法及装置

    公开(公告)号:CN119225189B

    公开(公告)日:2025-03-07

    申请号:CN202411774178.1

    申请日:2024-12-05

    Abstract: 本发明涉及无模型回归强化学习技术领域,特别涉及基于无模型回归强化学习的机器人系统控制方法及装置。方法包括:对机器人非线性系统进行系统变换,寻找可容许控制作为输入数据,收集系统信息,包括不同时刻的状态信息、执行‑评判网络的基函数值等;利用收集的信息计算关键列向量和性能指标函数。利用迭代回归信息推导出辅助回归常数权值和整合执行‑评判网络的常数权值的迭代规则,基于最优执行‑评判网络值对机器人系统进行最优控制,使机器人系统进行物体抓取。本发明通过对机器人系统信号的采集,不断迭代带折扣参数的神经网络权值,得到最优权值向量,获得最优决策控制方法,获得机器人系统最优控制决策,通过机器人系统对物体进行抓取。

    基于无模型回归强化学习的机器人系统控制方法及装置

    公开(公告)号:CN119225189A

    公开(公告)日:2024-12-31

    申请号:CN202411774178.1

    申请日:2024-12-05

    Abstract: 本发明涉及无模型回归强化学习技术领域,特别涉及基于无模型回归强化学习的机器人系统控制方法及装置。方法包括:对机器人非线性系统进行系统变换,寻找可容许控制作为输入数据,收集系统信息,包括不同时刻的状态信息、执行‑评判网络的基函数值等;利用收集的信息计算关键列向量和性能指标函数。利用迭代回归信息推导出辅助回归常数权值和整合执行‑评判网络的常数权值的迭代规则,基于最优执行‑评判网络值对机器人系统进行最优控制,使机器人系统进行物体抓取。本发明通过对机器人系统信号的采集,不断迭代带折扣参数的神经网络权值,得到最优权值向量,获得最优决策控制方法,获得机器人系统最优控制决策,通过机器人系统对物体进行抓取。

Patent Agency Ranking