-
公开(公告)号:CN112560173B
公开(公告)日:2021-08-17
申请号:CN202011423713.0
申请日:2020-12-08
Applicant: 北京京航计算通讯研究所
IPC: G06F30/15 , G06F30/27 , G06N3/04 , G06F119/08
Abstract: 本发明涉及一种基于深度学习的车辆耐候性温度预测方法及装置,属于神经网络技术领域,解决了现有的车辆耐候性温度预测方法效率较低且温度预测结果精度较低的问题。方法包括:获取训练数据,训练数据包括大气环境参数及其对应的车辆测点温度;对大气环境参数及其对应的车辆测点温度进行归一化处理,得到归一化的训练数据样本;构建深度学习预测模型,并将归一化的训练数据样本输入深度学习预测模型进行模型训练,得到训练好的深度学习预测模型;获取待预测数据样本,并基于训练好的深度学习预测模型对待预测数据样本对应的车辆测点温度进行预测,得到车辆测点温度的预测值。实现了车辆测点温度的预测,提高了预测效率和精度。
-
公开(公告)号:CN112560173A
公开(公告)日:2021-03-26
申请号:CN202011423713.0
申请日:2020-12-08
Applicant: 北京京航计算通讯研究所
IPC: G06F30/15 , G06F30/27 , G06N3/04 , G06F119/08
Abstract: 本发明涉及一种基于深度学习的车辆耐候性温度预测方法及装置,属于神经网络技术领域,解决了现有的车辆耐候性温度预测方法效率较低且温度预测结果精度较低的问题。方法包括:获取训练数据,训练数据包括大气环境参数及其对应的车辆测点温度;对大气环境参数及其对应的车辆测点温度进行归一化处理,得到归一化的训练数据样本;构建深度学习预测模型,并将归一化的训练数据样本输入深度学习预测模型进行模型训练,得到训练好的深度学习预测模型;获取待预测数据样本,并基于训练好的深度学习预测模型对待预测数据样本对应的车辆测点温度进行预测,得到车辆测点温度的预测值。实现了车辆测点温度的预测,提高了预测效率和精度。
-