-
公开(公告)号:CN110626519B
公开(公告)日:2021-06-11
申请号:CN201910791669.X
申请日:2019-08-26
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种降低对流动转捩影响的飞行器表面缺陷尺度控制方法,首先利用理论分析手段或地面试验手段对飞行器开展流动转捩研究,得出满足边界层转捩不受影响的表面缺陷尺度的约束范围;然后针对产生缺陷的部段开展气动加热、结构温度场和变形场联合仿真分析,从结构变形计算结果中提取得到飞行过程中产生缺陷的各部段热变形量数据;最后利用初始缺陷尺度抵消热变形量的策略,根据约束范围和热变形量数据设计初始应加工的缺陷尺度,确保飞行过程中实际缺陷尺度满足约束范围。本发明可以合理且有效的控制飞行器表面缺陷尺度,降低其诱发表面提前转捩的可能,确保飞行器热防护系统可靠工作。
-
公开(公告)号:CN106853873B
公开(公告)日:2019-04-09
申请号:CN201710083870.3
申请日:2017-02-16
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 张鹏宇 , 陈芳 , 王颖 , 程璞 , 肖振 , 王毓栋 , 闵昌万 , 陈敏 , 刘秀明 , 谢佳 , 杨明 , 吴小华 , 陈安宏 , 黄兴李 , 葛亚杰 , 杨凌霄 , 朱广生 , 阎君
IPC: B64F5/60
Abstract: 本发明公开了一种飞行器系统辨识激励信号切入和改出策略设计方法,属于飞行试验设计领域。在进入激励信号判决窗口后,利用切入滑动窗口、改出滑动窗口设计和均值滤波方法,实时判断切入或改出时机,相较于传统的事先装订方式,本发明既能够保证在合适的飞行时机进行切入激励信号,又保证在飞行过程中发现风险时及时改出激励信号,最终保证飞行器安全和飞行试验的成功。
-
公开(公告)号:CN107976296A
公开(公告)日:2018-05-01
申请号:CN201711116305.9
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种基于回溯自适应算法的飞行器气动特性在线辨识方法,包括步骤:(1)、将飞行器角速度动力学方程中转动惯量矩阵的逆与力矩向量的乘积项等效变换成φT(k)θ*形式,并将其进行离散化处理,得到飞行器角速度的差分方程;其中,φT(k)为信号向量,θ*为参数真值向量,所述真值参数向量为包含待辨识气动特性参数的列向量;(2)、建立角速度估计虚拟系统的数学模型,使得角速度估计误差与参数估计误差为φT(k)[θ(k)-θ*],其中,θ(k)为参数真值向量的估计值;(3)、建立角速度估计误差的回溯性能公式,结合回溯更新律,实时获取φ(k),采用回溯自适应方法解算θ(k),使角速度估计误差趋近于0,根据θ(k)的值解算待辨识气动特性参数。该方法计算量更小,对计算机要求更低,具有可操作性。
-
公开(公告)号:CN106202807A
公开(公告)日:2016-12-07
申请号:CN201610589156.7
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: G06F17/5095
Abstract: 判别航天器身部激波/前缘类激波干扰发生条件及类型的方法,属于航天器气动热环境分析领域。该方法根据激波关系式建立了身部激波/前缘类激波干扰发生条件与飞行状态和气动外形的定量关系,对身部激波/前缘类激波干扰发生条件作出快速判别并给出干扰作用位置;建立了身部激波/前缘类激波干扰类型判别特征参数与飞行状态和气动外形参数的关联关系,根据不同类型身部激波/前缘类激波干扰流动结构特征,对干扰类型作出快速判别,本发明方法可大大缩减身部激波/前缘类激波干扰发生条件及类型的判别周期,降低判别难度,提高设计效率。
-
公开(公告)号:CN111832159B
公开(公告)日:2023-08-29
申请号:CN202010581783.2
申请日:2020-06-23
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/20 , G06F119/08 , G06F113/08
Abstract: 本发明一种基于飞行试验数据的边界层转捩阵面动态演化过程确定方法,(1)将高超声速飞行器表面测点上安装的传感器输出的原始测量结果,转化为飞行器表面测点位置处的热流或温度信息,过滤掉异常的测点信息,得到可用的飞行器表面测点处的热流或温度信息;(2)根据可用的飞行器表面测点处的热流或温度信息,得到各个测点发生转捩的时刻;(3)对任意一时刻,根据得到的各个测点发生转捩的时刻,判断该时刻各个测点是否发生转捩;(4)在转捩测量时间窗口内,选取多个时刻点,对每个时刻点,获得该时刻的转捩阵面图像。(5)将步骤(3)获得的各个时刻的转捩阵面图像,按飞行时序装订为动画,获得转捩阵面动态演化过程,从而得到各时刻飞行器表面的转捩区域。
-
公开(公告)号:CN110626519A
公开(公告)日:2019-12-31
申请号:CN201910791669.X
申请日:2019-08-26
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种降低对流动转捩影响的飞行器表面缺陷尺度控制方法,首先利用理论分析手段或地面试验手段对飞行器开展流动转捩研究,得出满足边界层转捩不受影响的表面缺陷尺度的约束范围;然后针对产生缺陷的部段开展气动加热、结构温度场和变形场联合仿真分析,从结构变形计算结果中提取得到飞行过程中产生缺陷的各部段热变形量数据;最后利用初始缺陷尺度抵消热变形量的策略,根据约束范围和热变形量数据设计初始应加工的缺陷尺度,确保飞行过程中实际缺陷尺度满足约束范围。本发明可以合理且有效的控制飞行器表面缺陷尺度,降低其诱发表面提前转捩的可能,确保飞行器热防护系统可靠工作。
-
公开(公告)号:CN107966162B
公开(公告)日:2019-12-20
申请号:CN201711125078.6
申请日:2017-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
Abstract: 本发明涉及飞行器过载传感器系统级安装误差标定系统及方法,属于飞行器总体气动辨识技术领域。本发明的飞行器过载传感器系统级安装误差标定方法,用于飞行试验后修正过载测量数据,确保飞行器气动参数辨识的精度和可信性,也可以作为飞行器的设计参数,用于飞行导航解算。
-
公开(公告)号:CN107977491A
公开(公告)日:2018-05-01
申请号:CN201711117139.4
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 一种非稳态情况下飞行器空气舵缝隙的气动热评估方法,包括步骤如下:一、通过数值求解飞行器流场的N-S方程,获得飞行器外壁表面热流;二、对舵缝隙内是否存在非定常效应进行判断并相应处理;三、获得若干周期内舵缝隙区域特征点处定常方法的平均热流;四、获得若干周期内特征点处非定常方法的平均热流并和定常方法结果比较,根据情况相应处理;五、获得舵缝隙区域干扰因子,利用曲线拟合方法获得干扰因子随舵偏变化的分段解析函数曲线;六、将干扰因子的分段函数曲线嵌入到气动热工程计算程序,获得飞行器在设定弹道时间段的舵缝隙区域热环境结果。本发明在保证空气舵缝隙气动热评估结果可靠性的同时能够有效减小评估结果的冗余度。
-
公开(公告)号:CN114866869A
公开(公告)日:2022-08-05
申请号:CN202210331236.8
申请日:2022-03-30
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 苏汉生 , 任亮 , 阎君 , 朱广生 , 肖振 , 李彬 , 徐玮 , 艾炜 , 陈勇 , 张伯炜 , 杨亮 , 张晋 , 杨志涛 , 张明振 , 潘宇 , 秦永强 , 张发聪 , 薛志超 , 姚承照 , 李丹
Abstract: 本发明涉及一种适用于高速飞行的码率自适应调整通信方法,变更共有三种方式:指令变更、地理位置变更和时间备保变更,其中指令变更速率为主方式,地理位置变更和时间备保变更为辅助方式。指令变更方式通过天基链路或地基链路执行,变更指令中包含变更时间、覆盖时长等参数,飞行器测控系统根据变更指令自动计算并实施码率变更。在指令变更失效时,飞行器测控系统按照事先装订的变帧门限实施地理位置变更或时间备保变更。本发明针对飞行器飞行过程中不同区域测控保障能力的局限性和难点,实现了飞行器遥测传输码速率实时动态变更,解决了不同飞行状态下飞行器可靠测控通信的问题。
-
公开(公告)号:CN107894778B
公开(公告)日:2021-03-26
申请号:CN201711125083.7
申请日:2017-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 一种基于相平面分析的飞行器大幅调姿控制方法,步骤如下:(1)确定飞行器参数:包括初始角速度ω0,最大角加速度绝对值预设角速度ωswitch,原始目标姿态角θcxt,0,角度单位均采用弧度;(2)根据上述初始角速度ω0,最大角加速度绝对值以及原始目标姿态角θcxt,0,计算目标姿态角θcxt;(3)在每个控制周期,执行如下步骤:(3.1)实时获取飞行器的实际角速度ω与实际姿态角θ;(3.2)计算切换姿态角θswitch以及实际姿态角与目标姿态角间的偏差θe=θ‑θcxt;(3.3)设置精控区,在精控区内外采用不同的控制律进行控制。
-
-
-
-
-
-
-
-
-