-
公开(公告)号:CN115952261A
公开(公告)日:2023-04-11
申请号:CN202211583589.3
申请日:2022-12-09
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F16/332 , G06F16/33 , G06F40/30 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了一种基于多任务学习的生成式阅读理解方法,所述方法包括如下步骤:获取目标问题和目标段落,获取目标问题和目标段落的对应的特征向量,将特征向量输入到目标阅读理解模型,获取目标答案;从而提高目标答案的准确性和可靠性。
-
公开(公告)号:CN115840804A
公开(公告)日:2023-03-24
申请号:CN202211602874.5
申请日:2022-12-13
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F16/332 , G06F16/36 , G06F16/35 , G06F16/33 , G06F40/295
Abstract: 本发明提供了一种面向航空装备知识图谱的问答系统,包括:处理器和存储有一段计算机程序的存储器,当所述处理器执行一段计算机程序时,实现如下步骤:对目标问句进行处理,获取目标问句对应的目标问句向量、目标头实体和目标问答类型,对目标头实体和航空装备知识图谱嵌入表示进行实体链接,获取对应的目标头实体表示向量,将目标问句向量、目标头实体表示向量和目标问答类型输入到判别模型,获取候选答案列表和候选答案得分列表,确定目标答案向量集,本发明融合了得分阈值的筛选,使得问答的效果更为精准。
-
公开(公告)号:CN113553839A
公开(公告)日:2021-10-26
申请号:CN202010340711.9
申请日:2020-04-26
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F40/279 , G06F40/194
Abstract: 本申请涉及一种文本原创识别方法、装置、电子设备及存储介质,该方法包括:获取待识别的第一文本数据,以及与所述第一文本数据相关联的第二文本数据;确定所述第一文本数据的来源信息;当所述来源信息不满足于预设条件时,对所述第一文本数据和所述第二文本数据进行比较,得到相似度特征指标;将所述相似度特征指标输入训练好的识别模型,由所述识别模型根据所述相似度特征指标进行计算得到所述文本数据的原创识别结果。该技术方案一方面通过基于来源信息对文本进行初步原创判断,另一方面采用相似度指标对文本进行原创识别,以此种方式提高了原创识别的准确性和有效性,本申请采用的方法能够更好的服务于新闻工作的需求。
-
公开(公告)号:CN113536763B
公开(公告)日:2024-11-05
申请号:CN202110821206.0
申请日:2021-07-20
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F40/194 , G06F16/335
Abstract: 本公开涉及一种信息处理方法、装置、设备及存储介质。其中,信息处理方法包括:获取待处理文本;确定待处理文本与已存储文本之间的文本相似度;基于待处理文本的发布时间和已存储文本的发布时间,对文本相似度进行修正,得到修正后的文本相似度;在修正后的文本相似度大于或等于预设相似度阈值的情况下,将已存储文本作为待处理文本的相似文本。根据本公开实施例,可以提高重复信息的查找精度和效率且节约设备资源,以进一步提高重复信息的处理效果和效率,降低文本内容的重复性,进而使得用户快速且准确的从网络平台中查找感兴趣信息的需求,提高用户查看信息的体验且节约设备资源。
-
公开(公告)号:CN112364641B
公开(公告)日:2024-10-22
申请号:CN202011259475.4
申请日:2020-11-12
Applicant: 北京中科闻歌科技股份有限公司 , 深圳中科闻歌科技有限公司 , 国科智安(北京)科技有限公司
IPC: G06F40/284 , G06F40/166
Abstract: 本申请涉及一种面向文本审核的中文对抗样本生成方法及装置,其中方法包括:获取待处理语句信息;对待处理语句信息进行分词,得到多个词语;确定词语的第一重要性信息;获取各个词语对应的扰动词语;根据第一重要性信息,依次得到将待处理语句信息中各个词语替换为对应的扰动词语后的扰动语句信息;在确定扰动语句信息满足预设条件时,根据扰动语句信息得到对待处理语句信息攻击成功后的对抗样本。通过本实施例中的方法可以实现对待处理语句进行词语替换的方式得到对抗样本,进而可以增加用于对预测模型进行训练的样本的多样性,同时可以通过自动生成对抗样本,提升训练数据获取的便利性,提升模型训练的效率。
-
公开(公告)号:CN113672731A
公开(公告)日:2021-11-19
申请号:CN202110881327.4
申请日:2021-08-02
Applicant: 北京中科闻歌科技股份有限公司
Abstract: 本公开实施例涉及一种基于领域信息的情感分析方法,该方法包括:对待分析的文本信息进行预处理,并获取领域信息;将待分析的文本信息输入到预先融合有领域信息的情感分类模型中,获取文本信息的情感类别;融合有领域信息的情感分类模型包括:全局情感语义模型、每一个领域的局部情感语义模型和对应每一个领域的情感融合策略;其中,基于与领域信息匹配的局部情感语义模型,获取局部情感概率值;基于全局情感语义模型,获取全局情感概率值;基于与领域信息匹配的情感融合策略,对局部情感概率值和全局情感概率值进行融合,获得融合结果;基于融合结果获取情感类别。通过本方法进行文本情感分析,分类效果更好,大大提高了分析结果的准确率。
-
公开(公告)号:CN113536763A
公开(公告)日:2021-10-22
申请号:CN202110821206.0
申请日:2021-07-20
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F40/194 , G06F16/335
Abstract: 本公开涉及一种信息处理方法、装置、设备及存储介质。其中,信息处理方法包括:获取待处理文本;确定待处理文本与已存储文本之间的文本相似度;基于待处理文本的发布时间和已存储文本的发布时间,对文本相似度进行修正,得到修正后的文本相似度;在修正后的文本相似度大于或等于预设相似度阈值的情况下,将已存储文本作为待处理文本的相似文本。根据本公开实施例,可以提高重复信息的查找精度和效率且节约设备资源,以进一步提高重复信息的处理效果和效率,降低文本内容的重复性,进而使得用户快速且准确的从网络平台中查找感兴趣信息的需求,提高用户查看信息的体验且节约设备资源。
-
公开(公告)号:CN113496780A
公开(公告)日:2021-10-12
申请号:CN202010197391.6
申请日:2020-03-19
Applicant: 北京中科闻歌科技股份有限公司
IPC: G16H50/80
Abstract: 本发明实施例提供了一种传染病确诊者数量预测方法、装置、服务器及存储介质,该方法包括:确定传染病预测天数、基本传染数、传染病潜伏周期,基于以下步骤进行迭代,直至传染病预测天数归零输出传染病第二累计确诊者数量:获取第一易感者数量、第一现存疑似者数量、第一累计确诊者数量、第一累计痊愈者数量;基于第一累计痊愈者数量、第一累计确诊者数量、基本传染数、传染病潜伏周期更新预设传染病预测模型中系数;基于第一易感者数量、第一现存疑似者数量、第一累计确诊者数量、第一累计痊愈者数量、经过更新的传染病预测模型,输出第二易感者数量、第二现存疑似者数量、第二累计确诊者数量、第二累计痊愈者数量;对传染病预测天数进行递减。
-
公开(公告)号:CN112613324A
公开(公告)日:2021-04-06
申请号:CN202011596697.5
申请日:2020-12-29
Applicant: 北京中科闻歌科技股份有限公司 , 深圳中科闻歌科技有限公司 , 北京中科闻歌智安科技有限公司
Abstract: 本申请涉及一种语义情绪识别方法、装置、设备及存储介质,所述方法包括:获取待识别文本,然后对待识别文本的全局语义信息进行提取,得到第一语义向量,再利用预训练的词向量模型确定待识别文本的词向量矩阵,之后根据词向量矩阵确定第二语义向量,根据词向量矩阵计算待识别文本中每个词的词向量与预设情绪词语的词向量的相似度,并将计算得到的所有相似度确定为第三语义向量,最后根据第一语义向量、第二语义向量和第三语义向量确定待识别文本所属的情绪类别,如此,便可以根据待识别文本的全局语义信息以及待识别文本的词向量矩阵确定待识别文本的情绪类别,考虑了待识别文本的词语义、词组语义以及句子语义信息,提高了情绪识别的准确性。
-
公开(公告)号:CN112364641A
公开(公告)日:2021-02-12
申请号:CN202011259475.4
申请日:2020-11-12
Applicant: 北京中科闻歌科技股份有限公司 , 深圳中科闻歌科技有限公司 , 北京中科闻歌智安科技有限公司
IPC: G06F40/284 , G06F40/166
Abstract: 本申请涉及一种面向文本审核的中文对抗样本生成方法及装置,其中方法包括:获取待处理语句信息;对待处理语句信息进行分词,得到多个词语;确定词语的第一重要性信息;获取各个词语对应的扰动词语;根据第一重要性信息,依次得到将待处理语句信息中各个词语替换为对应的扰动词语后的扰动语句信息;在确定扰动语句信息满足预设条件时,根据扰动语句信息得到对待处理语句信息攻击成功后的对抗样本。通过本实施例中的方法可以实现对待处理语句进行词语替换的方式得到对抗样本,进而可以增加用于对预测模型进行训练的样本的多样性,同时可以通过自动生成对抗样本,提升训练数据获取的便利性,提升模型训练的效率。
-
-
-
-
-
-
-
-
-