一种基于光子技术的太赫兹雷达探测方法及系统

    公开(公告)号:CN115184943A

    公开(公告)日:2022-10-14

    申请号:CN202210705255.2

    申请日:2022-06-21

    Abstract: 本发明公开了一种基于光子技术的太赫兹雷达探测方法及系统,该方法利用波长选择模块选出两个梳齿,其中一根梳齿分为上下两路,基带信号对光上路梳齿实现抑制载波单边带调制得到扫频光信号,然后与光频梳另一根梳齿合为复合光信号;复合光信号一部分通过光电探测器转化为太赫兹信号后辐射到目标环境中,接收单元接收目标回波信号后通过谐波混频器下变频得到基带回波信号,基带回波信号对下路梳齿调制得到接收光信号;接收光信号与另一部分复合光信号送入相干接收模块实现相干接收,得到携带目标信息的中频信号,通过算法可提取探测目标信息。本发明通过同一参考源同步光频梳及谐波混频器实现太赫兹雷达信号的光子产生与实时相干接收,雷达系统参数灵活可调,抗干扰能力强。

    一种基于双光频梳的三维固态激光雷达探测方法及装置

    公开(公告)号:CN113820688B

    公开(公告)日:2022-04-05

    申请号:CN202111413183.6

    申请日:2021-11-25

    Abstract: 本发明公开了一种基于双光频梳的三维固态激光雷达探测方法及装置,该方法利用中频线性扫频信号分别对重复频率不同的两个光频梳调制得到两个扫频光频梳信号;一个作为探测光信号依次送入包含N个输入端口的Rotman光透镜;不同输入端口的探测光信号在ϕ平面扫描,同时每个输入端口内探测光信号通过光天线在垂直于ϕ平面的θ平面进行扫描;探测光信号遇到目标后反射回光天线,与另一个扫频光频梳信号实现相干探测,信号处理后可获取目标三维空间分布及速度信息;本发明的三维固态激光雷达探测装置,通过频率色散波束扫描技术、Rotman光透镜波束方向控制技术以及双光频梳相干接收技术,可无机械扫描实现目标三维空间分布及速度信息的高精度测量。

    一种基于键合结构的温度不敏感型硅光发射芯片

    公开(公告)号:CN116207609A

    公开(公告)日:2023-06-02

    申请号:CN202310466256.0

    申请日:2023-04-27

    Abstract: 本发明公开了一种基于键合结构的温度不敏感型硅光发射芯片,其特征在于,包括依次连接的激光器、硅光调制器、温度不敏感型阵列波导光栅和光发射芯片输出端,其中所述激光器和硅光调制器均设置有若干个,且所述激光器和所述硅光调制器一对一连接;所述激光器为相移光栅型分布反馈激光器,所述激光器与所述硅光调制器间通过苯并环丁烯材料键合,所述温度不敏感型阵列波导光栅通过硅波导实现,相邻阵列波导间存在长度差△L,每根阵列波导由粗波导和细波导级联而成。

    一种光子神经网络卷积加速芯片

    公开(公告)号:CN115222035B

    公开(公告)日:2022-12-30

    申请号:CN202211146164.6

    申请日:2022-09-20

    Abstract: 本发明公开了一种光子神经网络卷积加速芯片,适用于所有包含卷积运算的深度学习网络。本发明光子神经网络卷积加速芯片由完成卷积加速运算的调制器、耦合器、波分延时加权单元及平衡光电探测器一体化集成。本发明基于波分复用技术将待处理信号分别加载到多个光载波上,通过解波分复用、光幅度控制与延迟波导实现不同载波信号的卷积核系数加权与时间交织,通过平衡光电探测器实现加权后求和运算。本发明利用一对集成波分延时加权单元即可实现任意实数卷积核矩阵系数的构建,结合延时可完成任意信号的卷积加速运算。将光作为信息载体,可实现低功耗、高速率卷积运算。

    一种基于时间-波长交织的光子二维卷积加速方法及系统

    公开(公告)号:CN114819132B

    公开(公告)日:2022-10-11

    申请号:CN202210734531.8

    申请日:2022-06-27

    Abstract: 本发明公开了一种基于时间‑波长交织的光子二维卷积加速方法及系统,首先将待卷积信号加载到包含M×N个波长的多波长光信号上,通过解波分复用器将多波长光信号分为M个各包含N个波长的子光信号;M个子光信号依次增加等间隔延时后送入延时加权微环阵列,控制延时加权微环阵列中M个延时加权微环单元中共M×N个微环的耦合系数分别实现M×N个波长信号幅度加权;幅度加权后的M个子光信号波分复用为一路复合光信号后完成光电转换即可得到相应特征信号。本发明将光作为信息载体,基于两级延时与二维微环阵列加权,在单个信号周期即可实现二维数据的二维卷积核卷积加速运算,大幅提高卷积运算的速率及能效比。

    一种基于逆向设计的粗波分复用硅光发射芯片

    公开(公告)号:CN114779398B

    公开(公告)日:2022-09-23

    申请号:CN202210696520.5

    申请日:2022-06-20

    Abstract: 本发明公开了一种基于逆向设计的粗波分复用硅光发射芯片,包括:若干依次连接的垂直耦合光栅、多模干涉器和串联推挽型调制器、逆向设计的粗波分复用器和光发射芯片输出端。该芯片可用在光模块中的光发射芯片,在较小器件尺寸下能够对高速电信号调制,解决了器件插入损耗较大、尺寸较大和调制带宽较低等问题。逆向设计的垂直耦合光栅减小耦合损耗且适当的减小尺寸,耦合损耗约‑1.8 dB,耦合区长度仅为10‑15μm;串联推挽调制器有效增大器件的调制带宽,电光带宽可超过35 GHz;逆向设计的粗波分复用器明显减小器件的尺寸,器件尺寸小于15×15μm2,信道间串扰较小,小于‑16 dB。提出的器件具有尺寸小、耦合效率高、电光带宽高和低串扰等优势。

    一种基于时间-波长交织的光子二维卷积加速方法及系统

    公开(公告)号:CN114819132A

    公开(公告)日:2022-07-29

    申请号:CN202210734531.8

    申请日:2022-06-27

    Abstract: 本发明公开了一种基于时间‑波长交织的光子二维卷积加速方法及系统,首先将待卷积信号加载到包含M×N个波长的多波长光信号上,通过解波分复用器将多波长光信号分为M个各包含N个波长的子光信号;M个子光信号依次增加等间隔延时后送入延时加权微环阵列,控制延时加权微环阵列中M个延时加权微环单元中共M×N个微环的耦合系数分别实现M×N个波长信号幅度加权;幅度加权后的M个子光信号波分复用为一路复合光信号后完成光电转换即可得到相应特征信号。本发明将光作为信息载体,基于两级延时与二维微环阵列加权,在单个信号周期即可实现二维数据的二维卷积核卷积加速运算,大幅提高卷积运算的速率及能效比。

    一种时间-波长交织光子神经网络卷积加速芯片

    公开(公告)号:CN114358271A

    公开(公告)日:2022-04-15

    申请号:CN202210267027.1

    申请日:2022-03-18

    Abstract: 本发明公开了一种时间‑波长交织光子神经网络卷积加速芯片,适用于所有包含卷积运算的深度学习网络。本发明通过光子集成技术将完成卷积加速运算的调制器、波分延时加权微环阵列及平衡光电探测器一体化集成。基于波分复用技术将待处理信号分别加载到多个光载波上,通过微环与延迟线实现不同载波信号的卷积核系数加权与时间交织,通过平衡光电探测器实现加权后求和运算。本发明利用集成微环器谐振特性可实现任意卷积核矩阵的构建,结合延时可完成任意信号的卷积加速运算。将光作为信息载体,可大幅提高卷积运算的速率及能效比。

    一种基于双光频梳的三维固态激光雷达探测方法及装置

    公开(公告)号:CN113820688A

    公开(公告)日:2021-12-21

    申请号:CN202111413183.6

    申请日:2021-11-25

    Abstract: 本发明公开了一种基于双光频梳的三维固态激光雷达探测方法及装置,该方法利用中频线性扫频信号分别对重复频率不同的两个光频梳调制得到两个扫频光频梳信号;一个作为探测光信号依次送入包含N个输入端口的Rotman光透镜;不同输入端口的探测光信号在ϕ平面扫描,同时每个输入端口内探测光信号通过光天线在垂直于ϕ平面的θ平面进行扫描;探测光信号遇到目标后反射回光天线,与另一个扫频光频梳信号实现相干探测,信号处理后可获取目标三维空间分布及速度信息;本发明的三维固态激光雷达探测装置,通过频率色散波束扫描技术、Rotman光透镜波束方向控制技术以及双光频梳相干接收技术,可无机械扫描实现目标三维空间分布及速度信息的高精度测量。

    一种多通道光电收发集成系统

    公开(公告)号:CN117270123B

    公开(公告)日:2024-03-19

    申请号:CN202311568140.4

    申请日:2023-11-23

    Abstract: 本发明公开了一种多通道光电收发集成系统,基于硅基设计的光电传输结构,本发明实现了在同一种结构下光电的相互作用,包括光电调制与光电解调。通过设计光电传输结构的物理尺寸与电磁传输特性,实现了其与不同类型的外部电放大芯片的尺寸匹配与电性能匹配,并构建了多通道的光电收发集成系统,可用于多通道高速光电信号的传输。本发明公开的一种多通道光电收发集成系统具有光电收发一体集成特点,集成程度高,采用同一种工艺即可实现光电的相互转化作用,避免了不同工艺带来的异质集成问题,有利于未来更大规模的光电集成与高速信号传输。

Patent Agency Ranking