在CPU上实时多尺度人脸检测方法与系统及相关设备

    公开(公告)号:CN109815789A

    公开(公告)日:2019-05-28

    申请号:CN201811514183.3

    申请日:2018-12-11

    IPC分类号: G06K9/00 G06N3/04 G06T1/20

    摘要: 本发明涉及人脸检测技术领域,具体涉及一种在CPU上实时多尺度人脸检测方法与系统及相关设备,目的在于降低人脸检测的硬件成本,提高人脸检测的速度与准确度。本发明的人脸检测系统包括:特征提取模块、多尺度检测模块和非极大值抑制模块。其中,特征提取模块配置为:从待检测图像中提取关键特征,得到多尺度的待检测特征图;多尺度检测模块配置为:根据多尺度的待检测特征图预测人脸得分和相应的位置;非极大值抑制模块配置为:根据人脸得分进行非极大值抑制,从而得到检测结果。本发明降低了人脸检测的硬件成本,提高了多尺度人脸检测的速度与准确度,能在CPU上实现准确率较高的多尺度人脸检测功能,继而可以应用在手机等平台上。

    基于深层神经网络翻译模型的解码方法

    公开(公告)号:CN108647214A

    公开(公告)日:2018-10-12

    申请号:CN201810270468.0

    申请日:2018-03-29

    IPC分类号: G06F17/28 G06F17/27 G06N3/04

    摘要: 本发明涉及语言处理领域,提出了一种基于深层神经网络翻译模型的解码方法,旨在解决机器翻译模型中模型训练复杂度高、训练难度大解码速度慢等问题。该方法的具体实施方式包括:对待翻译语句进行分词处理,得到源语言词汇;步骤2,使用自动对齐工具对预设的翻译模型词汇表中的语料进行词对齐,得到与所述源语言词汇对齐的目标语言单词;步骤3,基于步骤2所得到的目标语言单词,确定出所述待翻译语句的目标端动态词汇表,根据预先构建的翻译模型,使用柱搜索方法解码出的语句作为所述翻译模型的输出;其中,所述翻译模型为基于门限残差机制和平行注意力机制的深层神经网络。本发明提升了模型翻译质量,提高了模型解码速度。

    基于深层神经网络翻译模型的解码方法

    公开(公告)号:CN108647214B

    公开(公告)日:2020-06-30

    申请号:CN201810270468.0

    申请日:2018-03-29

    IPC分类号: G06F40/58 G06F40/289 G06N3/04

    摘要: 本发明涉及语言处理领域,提出了一种基于深层神经网络翻译模型的解码方法,旨在解决机器翻译模型中模型训练复杂度高、训练难度大解码速度慢等问题。该方法的具体实施方式包括:对待翻译语句进行分词处理,得到源语言词汇;步骤2,使用自动对齐工具对预设的翻译模型词汇表中的语料进行词对齐,得到与所述源语言词汇对齐的目标语言单词;步骤3,基于步骤2所得到的目标语言单词,确定出所述待翻译语句的目标端动态词汇表,根据预先构建的翻译模型,使用柱搜索方法解码出的语句作为所述翻译模型的输出;其中,所述翻译模型为基于门限残差机制和平行注意力机制的深层神经网络。本发明提升了模型翻译质量,提高了模型解码速度。

    一种多源数据映射关联细粒度不良信息检测方法

    公开(公告)号:CN116680419B

    公开(公告)日:2023-12-26

    申请号:CN202310955604.0

    申请日:2023-08-01

    摘要: 本发明涉及自然语言处理技术领域,提供一种多源数据映射关联细粒度不良信息检测方法,所述方法包括:获取待检测文本和历史浏览文本,待检测文本和历史浏览文本属于同一用户的浏览文本;对待检测文本进行实体关系抽取,得到待检测三元组;获取历史浏览文本中的不良信息所对应的历史三元组,并基于历史三元组与待检测三元组之间的关联度,从待检测三元组中确定出待检测文本中的不良信息所对应的三元组。本发明提供的一种多源数据映射关联细粒度不良信息检测方法,能够准确从待检测三元组中确定出待检测文本中的不良信息所对应的三元组,避免传统方法中分词演变绕过黑名单机制导致漏检的问题,进一步提高的不良信息的检测精度。