-
公开(公告)号:CN112560858A
公开(公告)日:2021-03-26
申请号:CN202011088800.5
申请日:2020-10-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京工业大学
Abstract: 本发明公开了一种联合轻量化网络和个性化特征提取的字符图片检测及快速匹配方法,首先基于轻量化网络的深度学习方法对字符类图片进行分类,检测出字符类图片和非字符类图片,对于字符类图片进一步划分出复杂背景和简单背景两类字符类图片;进而针对两类字符图片,分别提取个性化特征表征图片内容;最后根据提取的个性化特征使用对应方法进行快速匹配,在保证准确率的同时,提高匹配速度。本发明可以有效降低匹配时间,可以综合、高效地利用字符类图片的内容信息,达到兼具鲁棒性和实时性的字符类图片匹配需求。
-
公开(公告)号:CN114118127B
公开(公告)日:2024-05-21
申请号:CN202111205085.3
申请日:2021-10-15
Applicant: 北京工业大学 , 国家计算机网络与信息安全管理中心
IPC: G06V20/50 , G06V10/80 , G06V10/82 , G06V10/40 , G06V10/764 , G06N3/0464
Abstract: 本申请实施例涉及一种视觉场景标志的检测与识别方法及装置,该方法包括:通过视觉场景标志合成算法确定目标识别类别的视觉场景标志训练数据;基于多尺度特征融合网络模型,对视觉场景标志训练数据进行视觉场景标志的检测与识别;其中,多尺度特征融合网络模型基于以下步骤获得:构建多尺度特征融合网络模型;基于视觉场景标志合成数据对多尺度特征融合网络模型进行第一训练,得到第一训练后的多尺度特征融合网络模型;基于预先标注的视觉场景标志对第一训练后的多尺度特征融合网络模型进行第二训练,得到训练好的多尺度特征融合网络模型。本申请实施例能够提升视觉场景标志检测与识别的精准度和速度。
-
公开(公告)号:CN112560858B
公开(公告)日:2023-04-07
申请号:CN202011088800.5
申请日:2020-10-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京工业大学
IPC: G06V30/148 , G06V30/19 , G06V10/762
Abstract: 本发明公开了一种联合轻量化网络和个性化特征提取的字符图片检测及快速匹配方法,首先基于轻量化网络的深度学习方法对字符类图片进行分类,检测出字符类图片和非字符类图片,对于字符类图片进一步划分出复杂背景和简单背景两类字符类图片;进而针对两类字符图片,分别提取个性化特征表征图片内容;最后根据提取的个性化特征使用对应方法进行快速匹配,在保证准确率的同时,提高匹配速度。本发明可以有效降低匹配时间,可以综合、高效地利用字符类图片的内容信息,达到兼具鲁棒性和实时性的字符类图片匹配需求。
-
公开(公告)号:CN114118127A
公开(公告)日:2022-03-01
申请号:CN202111205085.3
申请日:2021-10-15
Applicant: 北京工业大学 , 国家计算机网络与信息安全管理中心
Abstract: 本申请实施例涉及一种视觉场景标志的检测与识别方法及装置,该方法包括:通过视觉场景标志合成算法确定目标识别类别的视觉场景标志训练数据;基于多尺度特征融合网络模型,对视觉场景标志训练数据进行视觉场景标志的检测与识别;其中,多尺度特征融合网络模型基于以下步骤获得:构建多尺度特征融合网络模型;基于视觉场景标志合成数据对多尺度特征融合网络模型进行第一训练,得到第一训练后的多尺度特征融合网络模型;基于预先标注的视觉场景标志对第一训练后的多尺度特征融合网络模型进行第二训练,得到训练好的多尺度特征融合网络模型。本申请实施例能够提升视觉场景标志检测与识别的精准度和速度。
-
公开(公告)号:CN112653899B
公开(公告)日:2022-07-12
申请号:CN202011509545.7
申请日:2020-12-18
Applicant: 北京工业大学
IPC: H04N21/2187 , H04N21/234 , H04N21/44
Abstract: 本发明涉及一种基于联合注意力ResNeSt的复杂场景下网络直播视频特征提取方法。首先对网络直播视频进行关键帧提取,得到视频的关键帧数据。为了利用视频帧的多尺度特征,按照特征金字塔网络的多尺度结构,设计了一个并行通路。该并行通路是自下而上构建的,与原有主干通路之间利用横向连接和斜向连接进行信息交换,其中横向连接和斜向连接均为卷积运算。考虑到网络直播的画面表现形式多以人为主体,同时夹杂大量冗余信息,因此引入空间——通道联合注意力,便于聚焦画面主体特征。最后,将融合了联合注意力的并行特征金字塔结合卷积层和池化层,构造ResNeSt特征提取模块,通过多层模块叠加,实现复杂场景下网络直播视频的特征提取。
-
公开(公告)号:CN112653899A
公开(公告)日:2021-04-13
申请号:CN202011509545.7
申请日:2020-12-18
Applicant: 北京工业大学
IPC: H04N21/2187 , H04N21/234 , H04N21/44
Abstract: 本发明涉及一种基于联合注意力ResNeSt的复杂场景下网络直播视频特征提取方法。首先对网络直播视频进行关键帧提取,得到视频的关键帧数据。为了利用视频帧的多尺度特征,按照特征金字塔网络的多尺度结构,设计了一个并行通路。该并行通路是自下而上构建的,与原有主干通路之间利用横向连接和斜向连接进行信息交换,其中横向连接和斜向连接均为卷积运算。考虑到网络直播的画面表现形式多以人为主体,同时夹杂大量冗余信息,因此引入空间——通道联合注意力,便于聚焦画面主体特征。最后,将融合了联合注意力的并行特征金字塔结合卷积层和池化层,构造ResNeSt特征提取模块,通过多层模块叠加,实现复杂场景下网络直播视频的特征提取。
-
-
-
-
-