-
公开(公告)号:CN115107330B
公开(公告)日:2024-02-13
申请号:CN202210824891.7
申请日:2022-07-14
申请人: 中国兵器装备集团西南技术工程研究所
IPC分类号: B32B15/06 , B32B7/12 , B32B15/20 , B32B25/02 , B32B25/14 , B32B25/16 , C08J5/06 , C08L23/16 , C08L11/00 , C08L83/07 , C08L9/02 , C08L83/04 , C08K9/02 , C08K9/04 , C08K7/10 , F02K9/34
摘要: 一种铝合金发动机燃烧室复合结构内绝热层,所述复合结构内绝热层由陶瓷氧化层、橡胶绝热层以及结合界面层组成,所述橡胶绝热层是以三元乙丙橡胶与氯丁橡胶或丁腈橡胶任意比例混合作为橡胶基体,以玄武岩纤维和硅树脂复合补强形成。本发明中的铝合金发动机燃烧室复合内绝热层结构稳定,弹性较好,在高温高压和粒子冲刷环境中没有出现裂纹、被烧穿的现象,体积稳定不发生较大形变,具有较好的隔热性能,在热流密度为6500kW/m2氧‑乙炔火焰下烧蚀20s,其背面温度145℃左右,达到最高温度的时间为300s以上,线烧蚀率为0.061‑0.088mm/s,抗
-
公开(公告)号:CN115901854A
公开(公告)日:2023-04-04
申请号:CN202211323584.7
申请日:2022-10-27
申请人: 中国兵器装备集团西南技术工程研究所
IPC分类号: G01N25/22
摘要: 本发明提供一种模拟发动机烧蚀的试验装置,包括载气座、送粉管、密封块、喷嘴、冷却外壳及固定头;载气座包括第一壳体与第二壳体,第二壳体与第一壳体之间形成燃料气流通道,送粉管与第一壳体之间形成助燃气流通道;喷嘴包括燃烧腔、喉部与喷射腔,冷却外壳内壁与第二壳体、密封块、喷嘴靠近第一壳体段的外壁之间形成压缩空气通道。该装置所喷射出的焰流能够有效模拟发动机使用过程中的高温、高速、富氧以及含有固液两相流粒子冲刷烧蚀的实际工况,从而保证测试结果与实际工况的结果一致、为发动机表面耐烧蚀或绝热层的使用提供指导性参考意见。
-
公开(公告)号:CN115961283B
公开(公告)日:2024-06-25
申请号:CN202310082761.5
申请日:2023-02-08
申请人: 重庆大学 , 中国兵器装备集团西南技术工程研究所
摘要: 本发明提供一种合金表面用防护涂层的制备方法,包括:采用超音速火焰喷涂在合金基体(10)表面制备粘接层(20);采用等离子喷涂在粘接层(20)表面依次制备第一陶瓷层(31)、第二陶瓷层(32)与第三陶瓷层(33)所组成的梯度陶瓷中间层;采用多弧离子镀在陶瓷中间层表面制备硬质薄膜层(40);其中,第一陶瓷层(31)、第二陶瓷层(32)与第三陶瓷层(33)均由Al2O3‑TiO2氧化物组成,且由第一陶瓷层(31)至第三陶瓷层(33)中:Al2O3的含量呈上升趋势、TiO2的含量呈下降趋势。该方法制备得到的防护涂层在高温、高载荷作用下耐磨耐蚀性能优异,同时该方法制备得到的防护涂层不会出现分层、剥落、开裂、失效等问题。
-
公开(公告)号:CN117802447A
公开(公告)日:2024-04-02
申请号:CN202311687920.0
申请日:2023-12-08
申请人: 中国兵器装备集团西南技术工程研究所
摘要: 一种耐磨耐蚀防护层的制备方法,是先在钢铁构件表面进行渗锌处理,然后再在渗锌处理后的构件表面进行激光熔凝处理。本发明方法制备的耐磨耐蚀防护层,有效提高了基材的硬度,硬度达到800HV以上,增加基材的耐磨性能,本发明中先进行渗锌处理,再进行激光强化处理,促进渗锌层中锌向基体中进一步扩散,有效提高了基材表面的耐腐蚀性能,同时渗锌层向基材中进一步扩散,减少了基材表面的粗糙度,提高了基体摩擦面精度,降低了在摩擦过程中渗锌层剥落的风险。
-
公开(公告)号:CN115961283A
公开(公告)日:2023-04-14
申请号:CN202310082761.5
申请日:2023-02-08
申请人: 重庆大学 , 中国兵器装备集团西南技术工程研究所
摘要: 本发明提供一种合金表面用防护涂层的制备方法,包括:采用超音速火焰喷涂在合金基体(10)表面制备粘接层(20);采用等离子喷涂在粘接层(20)表面依次制备第一陶瓷层(31)、第二陶瓷层(32)与第三陶瓷层(33)所组成的梯度陶瓷中间层;采用多弧离子镀在陶瓷中间层表面制备硬质薄膜层(40);其中,第一陶瓷层(31)、第二陶瓷层(32)与第三陶瓷层(33)均由Al2O3‑TiO2氧化物组成,且由第一陶瓷层(31)至第三陶瓷层(33)中:Al2O3的含量呈上升趋势、TiO2的含量呈下降趋势。该方法制备得到的防护涂层在高温、高载荷作用下耐磨耐蚀性能优异,同时该方法制备得到的防护涂层不会出现分层、剥落、开裂、失效等问题。
-
公开(公告)号:CN117182084A
公开(公告)日:2023-12-08
申请号:CN202311255257.7
申请日:2023-09-27
申请人: 中国兵器装备集团西南技术工程研究所
摘要: 一种高均质高流动性钼合金粉体的制备方法,是以Mo粉体、La2O3粉体和HfC粉体为原料,依次进行球磨、团聚造粒和等离子球化,所述球磨为两步球磨,其中第一步球磨是将原料混合后,加入无水乙醇进行行星式球磨得合金粉体,第二步球磨是将第一步球磨后的合金粉体中加入无水乙醇进行砂磨。本发明通过“行星式球磨+砂磨”的两步球磨方式,在极短的时间内实现了多元混合粉体的均化与细化,后续团聚造粒后结合采用等离子球化技术对球形团聚粉体进行表面瞬时微烧结,改善了传统真空烧结工艺烧结时间长、晶粒易长大、流动性不高等不足,可快速获得流动性优于20s/50g的高品质钼合金热喷涂粉体。
-
公开(公告)号:CN115537810A
公开(公告)日:2022-12-30
申请号:CN202211258529.4
申请日:2022-10-14
申请人: 中国兵器装备集团西南技术工程研究所
IPC分类号: C23C28/00 , B22F10/22 , B22F10/25 , B33Y10/00 , B33Y70/10 , B33Y80/00 , C23C4/08 , C23C4/134 , C23C4/18 , C23C24/10
摘要: 本发明提供一种基于等离子喷涂‑激光熔覆制备复合构件的方法,包括:步骤A、石墨芯模的制备;步骤B、等离子喷涂制备第二基体层;步骤C、激光熔覆制备交替层,交替层为难熔金属层与陶瓷层相互交替叠加;步骤D、等离子喷涂制备缓和层;步骤E、循环进行步骤C与步骤D且最外层为交替层;步骤F、机加工去除石墨芯模。该方法适用于回转体构件等异形件的制备,无需进行高温高压处理、有效节约生产能耗,生产成本低,安全性高,适用于难熔金属‑陶瓷复合材料的回转体构件等异形件的大批量制备。
-
公开(公告)号:CN118600356A
公开(公告)日:2024-09-06
申请号:CN202410818255.2
申请日:2022-08-11
申请人: 中国兵器装备集团西南技术工程研究所
摘要: 本发明提供一种合金基体表面用复合绝缘涂层及其制备方法,涉及绝缘防护涂层领域,包括在合金基体表面制备的过渡层、陶瓷层与面层,其中:过渡层采用NiCrAlY与NiCoCrAlY中任一种金属化合物,过渡层的厚度为50~100μm;陶瓷层采用Al2O3、ZrO2、#imgabs0#中的任一种作为粉体,陶瓷层的厚度为100~400μm;面层采用#imgabs1#或#imgabs2#中任一种金属‑碳化物材料,面层的厚度为100~200μm。该复合绝缘涂层耐磨耐蚀性能优异,能够有效避免腐蚀介质、老化介质、导电介质等进入,从而保证合金基体的抗老化性能、绝缘性能及抗蚀性能,增加合金基体的使用寿命,避免在长期磨损后出现绝缘性能失效问题。
-
公开(公告)号:CN118461003A
公开(公告)日:2024-08-09
申请号:CN202410833847.1
申请日:2022-10-14
申请人: 中国兵器装备集团西南技术工程研究所
IPC分类号: C23C28/00 , C23C4/134 , C23C4/08 , C23C24/10 , C23C4/18 , B22F10/25 , B22F10/22 , B33Y10/00 , B33Y70/10 , B33Y80/00
摘要: 本发明提供一种难熔金属‑陶瓷复合材料构件及其制备方法,涉及材料制造领域,难熔金属‑陶瓷复合材料构件包括第二基体层(31)、交替层(32)与缓和层(33),交替层(32)与缓和层(33)交替叠加且最外层为交替层(32);交替层(32)为难熔金属层(321)与陶瓷层(322)相互交替叠加,其中,交替层(32)的交替层数为3、5或7层,交替层(32)的内层与外层均为难熔金属层(321),陶瓷层(322)厚度大于难熔金属层(321)厚度。本制备方法适用于回转体构件等异形件的制备,能有效节约生产能耗及生产成本,减少制备过程中的安全隐患,适用于难熔金属‑陶瓷复合材料的回转体构件等异形件的工业化生产。
-
公开(公告)号:CN116219436B
公开(公告)日:2024-07-30
申请号:CN202310049760.0
申请日:2023-02-01
申请人: 重庆大学 , 中国兵器装备集团西南技术工程研究所
摘要: 本发明提供一种耐磨耐蚀梯度防护涂层,由合金基体(10)向外依次为粘接层(20)、中间层与面层(40);粘接层(20)为合金层、面层(40)为硬质薄膜层;中间层为氧化物陶瓷层,包括三层Al2O3‑TiO2氧化物组成的梯度陶瓷层,即由靠近粘接层(20)至靠近面层(40)依次为第一陶瓷层(31)、第二陶瓷层(32)与第三陶瓷层(33);第一陶瓷层(31)至第三陶瓷层(33)中:Al2O3的含量呈上升趋势、TiO2的含量呈下降趋势。该防护涂层在高温、高载荷作用下,具有优异的耐磨耐蚀性能,同时,该防护涂层各层之间结合强度高,不会出现开裂、分层、剥离等问题。
-
-
-
-
-
-
-
-
-