基于全周期点流模型的发电侧碳排放趋势预测方法及装置

    公开(公告)号:CN117114212B

    公开(公告)日:2024-03-12

    申请号:CN202311385443.2

    申请日:2023-10-25

    Abstract: 本发明公开了基于全周期点‑流模型的发电侧碳排放趋势预测方法、存储介质和装置。该方法包括以下步骤:通过步骤X1至X3计算目标区域i单位用电的全周期碳排放,在步骤X1中还执行的步骤Y,计算目标区域i的电力源覆盖率,判断电力源覆盖率是否达到预设程度;若判断结果为达到,则以全国电力传输线损率均值作为目标区域i内供电线损率ρi;若判断结果为未达到,则调用目标区域i的同期电量输出和用电量数据,以这两者的差值与电量输出的比值作为目标区域i内供电线损率ρi;实现对目标区域i内供电线损率ρi的自适应调整。并通过步骤Z,根据全周期碳排数据,基于STIRPAT模型执行发电侧碳排放趋势预测。

    功率气象数据智能迁移的新能源长期电量预测方法与系统

    公开(公告)号:CN116227249B

    公开(公告)日:2023-09-15

    申请号:CN202310519220.4

    申请日:2023-05-10

    Abstract: 本申请涉及一种功率气象数据智能迁移的新能源长期电量预测方法与系统。所述方法包括:获取目标电力场站的历史发电量数据,根据目标电力场站的历史发电量数据,确定目标电力场站在预测时间段的第一发电量预测结果;根据目标电力场站对应的目标气象特征,在电力场站集合中匹配目标电力场站的相似电力场站;获取相似电力场站的历史发电量数据,根据相似电力场站的历史发电量数据,确定目标电力场站在预测时间段的第二发电量预测结果;根据第一发电量预测结果和第二发电量预测结果,确定目标电力场站的目标发电量预测结果。采用本方法能够基于历史数据迁移和相似场站进行数据迁移,确定精确的发电量预测结果,提高新能源发电量的预测结果准确度。

Patent Agency Ranking