-
公开(公告)号:CN101604705B
公开(公告)日:2011-07-20
申请号:CN200910053502.X
申请日:2009-06-19
Applicant: 上海新傲科技股份有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L29/78 , H01L29/06 , H01L29/423 , H01L21/336
Abstract: 一种四周环绕栅极鳍栅晶体管器件,包括:衬底;于衬底表面依次设置的绝缘层与半导体层,所述绝缘层靠近半导体层的表面具有一凹陷,所述半导体层包括位于凹陷处上方的悬空部分;栅介质层,所述栅介质层环绕半导体层位于凹槽上方的悬空部分;控制栅,所述控制栅设置于绝缘层表面,且所述控制栅包括环绕所述栅介质层的部分;以及源极和漏极区域。本发明的优点在于,能够提高栅极对导电沟道的控制能力,提高晶体管的电学性能,并且具有高集成度、低成本等的优点。
-
公开(公告)号:CN101710576B
公开(公告)日:2011-03-16
申请号:CN200910200126.2
申请日:2009-12-08
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/762
Abstract: 本发明涉及一种通过氧离子注入退火制备绝缘体上锗材料的方法。该方法首先在硅衬底上外延SiGe合金层;然后在SiGe合金层上外延Si薄层;通过两次不同剂量的氧离子注入,使注入的氧离子集中在硅衬底的上部,于硅衬底与SiGe合金层交界处形成氧离子聚集区;先后在不同含氧气氛中进行第一、第二次退火,使氧离子聚集区氧化形成SiO2,顶层Si薄层也氧化为SiO2,再在纯氧气气氛中退火,进一步提高SiGe层中锗的含量,然后在纯氮气气氛中退火,使SiGe层中Ge的分布更均匀,最后用纯氧气和纯氮气交替进行退火,最终SiGe合金中的Si完全被氧化为SiO2,将顶层的SiO2腐蚀掉,就形成了绝缘体上锗材料。
-
公开(公告)号:CN101604657B
公开(公告)日:2011-02-09
申请号:CN200910053503.4
申请日:2009-06-19
Applicant: 上海新傲科技股份有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762 , H01L21/265 , H01L21/20 , H01L21/78
Abstract: 一种制备双埋层绝缘体上硅衬底的方法,包括如下步骤:提供单晶硅支撑衬底;将第一离子注入单晶硅支撑衬底中;退火,从而在单晶硅支撑衬底中形成第一绝缘层以及第一单晶硅层;提供第一键合衬底;在第一键合衬底表的表面形成第二单晶硅层;在第二单晶硅层表面形成第二绝缘层;以第二绝缘层远离第一键合衬底的表面以及第一单晶硅层远离单晶硅支撑衬底的表面为键合面,进行键合操作;移除第一键合衬底。本发明的优点在于,采用注入工艺形成第一单晶硅层,从而能够避免边缘碎裂的问题,并且注入工艺可以减少机械抛光和键合的次数,从而提高了材料厚度的均匀性和晶向的对准精度。
-
公开(公告)号:CN101958271A
公开(公告)日:2011-01-26
申请号:CN201010223135.6
申请日:2010-07-09
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/762 , H01L21/20
Abstract: 本发明涉及一种利用绝缘体上硅制备悬空应变硅薄膜的方法,其特征在于在SOI上面外延一层SiGe层,然后将SOI材料淘空,通过应力转移法,将SiGe的应力转移到SOI材料的顶层硅中,最终获得悬空的应变硅薄膜层。所获得悬空的应变硅薄膜层的厚度为10-50nm。由本发明提供的工艺只需简单的一步外延工艺和湿法刻蚀工艺实施,避免了大量穿透位错的产生,获得高质量的应变硅薄膜材料。
-
公开(公告)号:CN101914758A
公开(公告)日:2010-12-15
申请号:CN201010235023.2
申请日:2010-07-23
Applicant: 上海新傲科技股份有限公司 , 中国科学院上海微系统与信息技术研究所
Abstract: 一种氧离子注入制备绝缘体上硅材料的方法,包括如下步骤:提供单晶硅衬底,所述单晶硅衬底具有一光滑的上表面;实施第一次氧离子注入,从单晶硅衬底的上表面注入;实施第二次氧离子注入,从单晶硅衬底的上表面注入;在含氧气氛下对单晶硅衬底实施退火;实施第三次氧离子注入,从单晶硅衬底的上表面注入;在含氧气氛下对单晶硅衬底再次实施退火;重复实施第三次离子注入以及退火的步骤以继续加厚绝缘埋层,至绝缘埋层的厚度达到目标厚度为止。
-
公开(公告)号:CN101901753A
公开(公告)日:2010-12-01
申请号:CN201010211396.6
申请日:2010-06-25
Applicant: 上海新傲科技股份有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L21/20 , H01L21/762
Abstract: 一种带有绝缘埋层的厚膜材料的制备方法,包括如下步骤:提供一支撑衬底;采用研磨减薄工艺修正所述支撑衬底,以减小衬底的总厚度偏差;抛光支撑衬底表面以降低粗糙度;将支撑衬底与器件层衬底通过一绝缘层键合在一起;将器件层衬底减薄至其厚度与最终器件层目标厚度差的范围是1μm至10μm;抛光减薄后的器件层衬底。本发明的优点在于,通过引入衬底修正的方法对支撑衬底的均匀性进行修正,以提高最终衬底的顶层半导体层的厚度均匀性。
-
公开(公告)号:CN101866875A
公开(公告)日:2010-10-20
申请号:CN201010189313.8
申请日:2010-06-01
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/762 , H01L21/20
Abstract: 本发明涉及一种制备绝缘体上锗硅(SGOI)材料的方法。首先在体硅上外延Si1-xGex/Siepi/Si1-yGey结构的多层材料,其中0<x<1,0<y<1,Si1-xGex为外延材料的上表面。控制外延的Si1-xGex和Si1-yGey薄膜的厚度,使其都小于临界厚度,以保证这两层薄膜都是完全应变的。然后使用层转移的方法将Si1-xGex/Si/Si1-yGey转移到一个SiO2/Si结构的支撑材料上,形成Si1-yGey/Si/Si1-xGex/SiO2/Si结构的多层材料。使用选择性腐蚀的方法去掉顶层的Si1-yGey,最后通过离子注入及退火,使得材料中的Si1-xGex发生弛豫,相应的顶层Si发生应变,得到Si/Si1-xGex/SiO2/Si的SGOI材料。
-
公开(公告)号:CN101866874A
公开(公告)日:2010-10-20
申请号:CN201010189312.3
申请日:2010-06-01
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/762 , H01L21/20
Abstract: 本发明涉及一种利用层转移技术制备绝缘体上锗硅(SGOI)材料的方法。首先在体硅上外延Siepi/Si1-xGex结构的多层材料,其中0<x<1,Siepi为外延材料的上表面。控制外延的Si1-xGex薄膜的厚度,使其小于临界厚度,以保证这层薄膜是完全应变的。然后使用层转移的方法将Siepi/Si1-xGex转移到一个SiO2/Si结构的支撑材料上,形成Si1-xGex/Siepi/SiO2/Si结构的多层材料。通过退火,使得材料中的Si1-xGex发生弛豫,弛豫过程中产生的位错主要分布在Siepi中,使得Si1-xGex保持了较高的晶格质量,然后通过外延的方法在Si1-xGex上继续外延一层Si薄膜,该薄膜将保持应变,最终得到Si/Si1-xGex/Siepi/SiO2/Si的SGOI材料。
-
公开(公告)号:CN101615590A
公开(公告)日:2009-12-30
申请号:CN200910055733.4
申请日:2009-07-31
Applicant: 上海新傲科技股份有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762 , H01L21/20 , H01L21/324
Abstract: 一种采用选择腐蚀工艺制备绝缘体上硅材料的方法,包括如下步骤:提供掺杂的单晶硅衬底;在单晶硅衬底表面生长非掺杂的本征单晶硅层;在本征单晶硅层表面生长器件层;提供支撑衬底;生长绝缘层;将单晶硅衬底和支撑衬底键合;采用选择性腐蚀工艺除去掺杂的单晶硅衬底;去除本征单晶硅层。本发明的优点在于,采用了本征单晶硅层作为腐蚀的自停止层,并在后续工艺中通过热氧化等方法将其除去,因此本发明所提供的技术方案可以用于制备具有任意电阻率顶层硅的绝缘体上硅衬底。
-
公开(公告)号:CN101197260A
公开(公告)日:2008-06-11
申请号:CN200710173709.1
申请日:2007-12-28
Applicant: 上海新傲科技有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L21/20 , H01L21/265 , H01L21/762 , H01L21/84
Abstract: 本发明涉及一种半导体衬底,包含了位于顶层的覆盖层和位于覆盖层下方的孔洞层,以及位于孔洞层下方的支撑层。采用离子注入和阳极氧化两种方法来制备这种特殊结构的半导体衬底。同时还公开了采用这种半导体衬底来制作广义键合减薄绝缘体上的硅材料的方法;以及将该半导体衬底用于材料外延作为外延衬底的方法。与现有技术相比,本发明的优在于该半导体衬底中的孔洞层能够帮助释放层间应力,获得完美的单晶材料。
-
-
-
-
-
-
-
-
-