-
公开(公告)号:CN118349883A
公开(公告)日:2024-07-16
申请号:CN202410345245.1
申请日:2024-03-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F18/214 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06F21/60
Abstract: 本申请提供一种重要数据的识别方法、装置和电子设备,涉及数据处理技术领域和人工智能技术领域。该方法包括:在识别重要数据时,可以先获取待识别数据集,待识别数据集中包括多个数据和各数据的重要度指标;针对各数据,将数据和数据的重要度指标输入至预设的重要数据识别模型中,得到数据对应的重要度得分;再基于各数据对应的重要度得分,从多个数据中识别重要数据,这样基于重要数据识别模型识别重要数据,与现有技术中基于预设重要度规则识别重要数据相比,不仅可以有效地提高重要数据的识别效率,而且提高了识别结果的准确度。
-
公开(公告)号:CN117312864A
公开(公告)日:2023-12-29
申请号:CN202311618449.X
申请日:2023-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06F40/284 , G06N3/08 , G06N3/0455 , G06N3/0475
Abstract: 本发明提供一种基于多模态信息的变形词生成模型的训练方法及装置,涉及语言生成技术领域,方法包括:获取变形词语料库,变形词语料库包括的不同初始样本由多模态信息组成;对变形词语料库中不同初始样本的不同类型的语料信息,采用对应类型的预处理方式分别进行预处理,生成大规模语料库;大规模语料库中每个语料样本包括多个语料信息的权重及特征向量,不同的语料信息的权重用于表征不同的语料信息在对应样本中不同的贡献程度;基于大规模语料库中预设数量的语料样本包括的多个语料信息的权重及特征向量,对初始模型进行训练,得到基于多模态信息的变形词生成模型。本发明能够提高变形词生成的精度和准确率。
-
公开(公告)号:CN116795980A
公开(公告)日:2023-09-22
申请号:CN202310440756.7
申请日:2023-04-21
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G06F16/35 , G06F40/289 , G06F40/30 , G06N3/0455 , G06N3/047 , G06N3/048 , G06N3/0985
Abstract: 本发明公开了一种融合细粒度要素知识的短文本分类方法,该方法包括:通过梳理标注短文本数据完成数据标注,其中,所述数据标注为标注全量标注数据类别和数据中存在要素信息;针对标注后的短文本数据,采用关键要素提取文本分类联合训练算法,借助BERT+CRF提取短文本数据中的要素信息;进而融合细粒度信息,结合标签编码器Label Encoder来学习各个标签label的表示,得到一个符合实际的标签分布。本发明针对上述问题提出一种融合细粒度要素知识的短文本分类的解决方法,从而提升短文本分类的效果,进而促使更为精准分析短文本数据,自动找到有关垃圾信息,提高工作效率。
-
公开(公告)号:CN116561512A
公开(公告)日:2023-08-08
申请号:CN202310431305.7
申请日:2023-04-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/10 , G06F18/27 , G06F18/22 , G06F18/214 , G06F16/9035 , G06F16/951 , G06F16/9537 , G06F16/9538 , G06F16/9535 , G06F16/9038
Abstract: 本发明提出了一种基于COX回归的多平台虚假信息识别方法及装置,方法包括:获取各自表征一主题的多组数据信息;基于数据信息与预先标记的数据信息的比对情况进行筛选;对当前数据信息进行排序以及填充处理;基于COX回归算法,利用当前数据信息,构建COX回归识别模型,并确认每一主题对应的数据信息中,各个维度信息对数据信息危险程度的影响情况;利用当前构建的COX回归识别模型,对再次获取的表征一主题的数据信息进行识别处理。本发明可基于同一主题的虚假信息识别,并且可以根据影响主题信息的多种因素,在不同的周期内,识别不同维度数据的影响因素权重。
-
公开(公告)号:CN115080871A
公开(公告)日:2022-09-20
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/04 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
公开(公告)号:CN114943073A
公开(公告)日:2022-08-26
申请号:CN202210380497.9
申请日:2022-04-12
Applicant: 国家计算机网络与信息安全管理中心 , 北京赋乐科技有限公司
Abstract: 本公开的实施例提供了加密流量的通用对称加密协议脱壳方法、装置、设备和计算机可读存储介质。所述方法包括获取加密协议的流量;基于预设的密码字典,通过马尔科夫‑GEP模型生成新的密码字典;基于加密协议密码字符组合规律,对所述新的密码字典中的密码进行规约;基于规约后的新的密码字典和传统的解密脱壳方法,构建对称加密协议脱壳模型;将所述加密协议的流量,输入至所述对称加密协议脱壳模型,完成脱壳。提高了脱壳准确度,使得脱壳更加高效。
-
公开(公告)号:CN114817516A
公开(公告)日:2022-07-29
申请号:CN202210448769.4
申请日:2022-04-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06F16/35 , G06F16/951 , G06F40/242 , G06F40/279 , G06F40/30 , G06N3/08
Abstract: 本发明涉及一种零样本条件下基于逆向匹配的画像映射方法,包括在数据特征标签和画像标签两个不同体系间建构双相关文本语料库,使用逆向匹配对语料库进行筛选修正;通过人工标注构建分类语料库,并训练模型建立画像体系间的映射关系;采用基于持续响应衰减的更新机制,并结合标签历史状态对时序变化的画像相关更新数据进行修正。本方法从扩展数据的角度出发,采用基于逆向匹配的文本库构建方法,引入与原始标签相关的外部文本数据扩展并增强标签的语义表达,再引入与用户画像相关的外部数据进行标注建立扩展标签和标注数据之间的联系,从而挖掘出原始特征标签隐含的丰富含义,达到从少量标签序列中计算目标画像的目的。
-
公开(公告)号:CN114021627A
公开(公告)日:2022-02-08
申请号:CN202111239649.5
申请日:2021-10-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种融合LSTM与场景规则知识的异常轨迹检测方法及装置,包括依据目标轨迹构建时序序列;将时序序列输入LSTM网络,获取的目标轨迹中每个时刻的位置隐向量,并基于各位置隐向量进行注意力机制计算,得到目标轨迹表示向量;拼接目标轨迹表示向量与设定场景规则的向量,并对拼接后向量进行分类,得到异常轨迹检测结果。本发明采用的融合方法除了使用向量表示轨迹之外,还加入了可调整的应用场景规则,解决单一方法的不足,具有更好的迁移性。
-
公开(公告)号:CN113674142A
公开(公告)日:2021-11-19
申请号:CN202111003756.8
申请日:2021-08-30
Applicant: 国家计算机网络与信息安全管理中心 , 恒安嘉新(北京)科技股份公司
Inventor: 佟玲玲 , 李玉惠 , 井雅琪 , 任博雅 , 段东圣 , 段运强 , 时磊 , 傅强 , 蔡琳 , 阿曼太 , 梁彧 , 马寒军 , 田野 , 王杰 , 杨满智 , 金红 , 陈晓光
Abstract: 本发明实施例公开了一种图像中目标物的消融方法、装置、计算机设备及介质。该方法包括:获取多个训练样本图像,并根据各训练样本图像中预先标注的标识框的长宽值和DIou损失函数的损失值,计算得到至少一个锚点框的长宽值;根据各锚点框的长宽值,对YoLoV5改进模型进行参数设置,并使用各训练样本图像对参数设置后的模型进行训练,得到目标检测模型;将待处理的目标图像输入至目标检测模型中,获取针对目标图像输出的至少一个目标物标识框;根据目标物标识框所限定的图像区域进行消融处理,得到目标消融图像。通过本发明实施例的技术方案,能够实现快速准确地对图像中的特定内容进行定位消融,提高了方法的运行效率,节约了硬件成本。
-
公开(公告)号:CN112084373A
公开(公告)日:2020-12-15
申请号:CN202010778910.8
申请日:2020-08-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/901 , G06F40/151 , G06Q50/00 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于图嵌入的多源异构网络用户对齐方法,其特征在于:1)通过用户名和社会角色计算用户属性的相似度;2)通过随机游走算法获得异构网络的节点序列,分析节点之间的相互关系;3)利用嵌入算法,对节点序列计算得到网络的嵌入表示;4)根据用户的属性相似度以及结构特征,训练多层神经网络对齐用户。本发明所公开的基于图嵌入的多源异构网络用户对齐方法可用于在线社交网络的用户对齐,在推荐系统、人物画像补全等多个领域具有重要应用,算法的计算复杂度低,可在网络中快速对齐相同用户,对真实数据适用性强。
-
-
-
-
-
-
-
-
-