-
公开(公告)号:CN119477920A
公开(公告)日:2025-02-18
申请号:CN202510066009.0
申请日:2025-01-16
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于细节感知采样注意力模块的气缸内壁磨损检测方法,涉及智能制造领域,基于现有模型采用的双线性插值采样处理对细微磨损的感知能力有限。为此,首先,本发明构建双线性重排特征图,由采样后的每一个特征点对应的原始特征点组成;其次,设计由全连接网络组成感知注意力模块,从双线性重排特征图学习采样权重图;再次,设计均值残差聚合模块,利用均值滤波器处理双线性重排特征图,并叠加上双线性重排特征图和采样权重图的聚合结果,作为采样特征图。由于双线性重排特征图均值代表原始特征图的低频信息,在残差聚合时,能强化采样注意力学习对高频信息的倾向,提升模型对磨损细节的感知能力,提高检测准确率。
-
公开(公告)号:CN119228788B
公开(公告)日:2025-02-18
申请号:CN202411725027.7
申请日:2024-11-28
Applicant: 华侨大学
IPC: G06T7/00 , G06N3/0455 , G06N3/08 , G06V10/26 , G06V10/40 , G06V10/764 , G06V10/82 , G01R31/12 , G01N21/88
Abstract: 本发明公开了一种基于类别余弦映射的绝缘子故障检测方法及装置,涉及人工智能、机器视觉领域,包括:从真实数据集合与合成数据集合中获取图像数据、故障标签以及类别标签;利用类别余弦偏置编码将类别偏置编码进图像数据,利用特征提取网络提取编码结果中的空间特征;利用类别余弦偏置解码缓解空间特征中的偏置信息以获得类别特征,利用多标签分类器获取类别特征与类别标签的分类损失;利用分割解码器获取空间特征与故障标签的掩码损失;基于分类损失与掩码损失完成模型训练。本发明将正常、故障绝缘子以及合成图像的类别差异通过余弦偏置编码至图像数据中,引导模型理解合成图像与真实场景中的分布差异,最终提升合成数据在实践中的有效性。
-
公开(公告)号:CN119229130B
公开(公告)日:2025-02-14
申请号:CN202411736952.X
申请日:2024-11-29
Applicant: 华侨大学
IPC: G06V10/26 , G06N3/0464 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明公开了一种基于分类激活映射自举的路面裂痕分割方法及装置,涉及人工智能、机器视觉领域,方法包括:训练基于深度网络的正常与裂痕路面分类模型;利用类激活映射方法生成路面图像的激活映射图,通过高激活阈值筛选出类别高激活掩码并进行增强操作后,加入路面图像训练集;重复上述步骤,直到达到设定条件;基于训练好的正常与裂痕路面分类模型生成待推理的路面图像的激活映射图,通过裂痕掩码阈值获得待推理的路面图像的裂痕掩码,作为裂痕分割结果。本发明利用分类模型与激活映射,寻找类别高激活掩码更新路面图像训练集,不断迭代优化掩码效果,以改善路面裂痕分割效果,无需对裂痕进行像素级的标注,大大降低了标注成本。
-
公开(公告)号:CN119339084A
公开(公告)日:2025-01-21
申请号:CN202411836240.5
申请日:2024-12-13
Applicant: 华侨大学 , 泉州圣源警用侦察设备有限公司
IPC: G06V10/26 , G06V10/764
Abstract: 本发明公开了一种基于区块类别编码的电缆图像分割方法及装置,涉及图像处理领域,包括:构建电缆图像分割模型和区块编码模块,将电缆分割训练数据中的图像数据输入到语义分割编码器,得到区块特征,将区块特征输入到语义分割解码器,得到语义类别概率,基于语义类别概率和语义类别标签构建语义分割损失函数,将语义类别标签输入到区块编码模块,得到区块类别标签,基于语义类别概率和区块类别标签构建相关性匹配损失函数,并计算得到总损失函数,基于总损失函数对电缆图像分割模型进行训练,得到经训练的电缆图像分割模型;利用经训练的电缆图像分割模型进行图像分割。本发明解决目前电缆图像分割技术中分割不完整、准确率低的问题。
-
公开(公告)号:CN119316609A
公开(公告)日:2025-01-14
申请号:CN202411837846.0
申请日:2024-12-13
Applicant: 华侨大学
IPC: H04N19/53 , G06N3/0464 , H04N19/80
Abstract: 本发明公开了一种基于自注意力机制的端到端视频压缩方法及系统,涉及视频编码领域,方法包括:提取当前帧、运动参考帧和上一时刻的重构帧的浅层特征;提取当前帧和运动参考帧之间的运动信息特征;压缩运动信息特征,获得压缩后的运动信息特征;将压缩后的运动信息特征补偿在上一时刻的重构帧的浅层特征上,获得当前时刻的上下文信息特征;压缩获得压缩后的上下文信息特征;将压缩后的上下文信息特征和当前帧的浅层特征融合特征进行编码,获得当前时刻的重构帧;对当前时刻的重构帧进行上采样,获得压缩视点图像;对压缩视点图像中的运动信息累积误差进行修正,得到下一帧的运动参考帧。本发明能够在提高运动估计的准确性的同时提升了编码的效率。
-
公开(公告)号:CN119180752A
公开(公告)日:2024-12-24
申请号:CN202411678685.5
申请日:2024-11-22
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06T3/4046
Abstract: 本发明公开了一种基于高效频域Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:构建基于高效频域Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型,图像超分辨率模型包括第一卷积层、亚像素卷积层、第二卷积层以及若干个高效频域Transformer模块;获取待重建的低分配率图像和上采样因子并输入经训练的图像超分辨率模型,先经过第一卷积层,得到第一卷积层的输出特征,第一卷积层的输出特征依次经过若干个高效频域Transformer模块,将最后一个高效频域Transformer模块的输出特征与第一卷积层的输出特征相加,得到第二相加结果,第二相加结果依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像。本发明克服现有Transformer方法计算复杂度过高的问题。
-
公开(公告)号:CN118552409B
公开(公告)日:2024-11-05
申请号:CN202411017310.4
申请日:2024-07-29
Applicant: 华侨大学 , 信泰(福建)科技有限公司 , 福建省万物智联科技有限公司
IPC: G06T3/4053 , G06N3/0455 , G06N3/08 , G06T5/60
Abstract: 本发明公开了一种基于小波变换和Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:将待重建的低分辨率图像和上采样因子输入经训练的图像超分辨率模型,待重建的低分辨率图像输入第一卷积层,得到第一卷积层的输出特征并输入第一个基于小波变换的Transformer模块,经过若干个基于小波变换的Transformer模块的特征提取,将最后一个基于小波变换的Transformer模块的输出特征与第一卷积层的输出特征相加,得到第二相加结果,第二相加结果依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像,其中亚像素卷积层的尺度因子为上采样因子。本发明可解决现有Transformer方法计算复杂度过高的问题。
-
公开(公告)号:CN118865075A
公开(公告)日:2024-10-29
申请号:CN202411319739.9
申请日:2024-09-23
Applicant: 华侨大学
IPC: G06V10/98 , G06N3/043 , G06N3/0464 , G06V10/776 , G06V10/82
Abstract: 本发明公开了一种基于分层时空感知的屏幕内容视频质量评价方法及装置,涉及视频评价领域,包括:提取屏幕内容视频中的若干个碎片化视频和若干个关键帧并输入经训练的屏幕内容视频质量评价模型,每个关键帧输入显著性计算模块筛选出若干个显著视频块,每个显著视频块输入双通道卷积神经网络,得到每个阶段的多层特征并输入块级质量评估模块,经过空间门特征增强模块,得到每个阶段的增强特征并输入块级质量聚合模块,得到每个视频块的块级质量分数;采用自适应加权策略计算得到空域感知质量分数;碎片化视频输入时域感知质量评估支路,得到时域感知质量分数,两者结合计算得到屏幕内容视频的质量分数,解决现有视频质量评价方法可靠性差的问题。
-
公开(公告)号:CN118397659B
公开(公告)日:2024-10-15
申请号:CN202410828405.8
申请日:2024-06-25
Applicant: 华侨大学
Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。
-
公开(公告)号:CN118469876B
公开(公告)日:2024-10-01
申请号:CN202410912771.1
申请日:2024-07-09
Applicant: 华侨大学
IPC: G06T5/77 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06T5/60
Abstract: 本发明公开了一种基于强感知Transformer架构的缺损视频修复方法及系统,涉及视频处理技术领域,方法包括以下步骤:特征提取模块接收待修复的缺损视频帧序列,采用卷积神经网络对视频帧进行特征提取,输出第一特征;强感知Transformer模块接收第一特征,采用交叉堆叠的局部感知Transformer和全局感知Transformer结构对第一特征进行纹理信息建模和结构信息建模,输出第二特征;重构模块接收第二特征,采用反卷积层进行视频帧重建,输出修复后视频帧序列。本发明采用交叉堆叠的局部感知Transformer和全局感知Transformer进行纹理信息和结构信息建模,有效解决现阶段缺损视频修复方法中存在修复区域缺乏细节纹理、全局结构与局部纹理不匹配的问题,实现更好的修复效果。
-
-
-
-
-
-
-
-
-