基于分层时空感知的屏幕内容视频质量评价方法及装置

    公开(公告)号:CN118865075B

    公开(公告)日:2024-12-03

    申请号:CN202411319739.9

    申请日:2024-09-23

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于分层时空感知的屏幕内容视频质量评价方法及装置,涉及视频评价领域,包括:提取屏幕内容视频中的若干个碎片化视频和若干个关键帧并输入经训练的屏幕内容视频质量评价模型,每个关键帧输入显著性计算模块筛选出若干个显著视频块,每个显著视频块输入双通道卷积神经网络,得到每个阶段的多层特征并输入块级质量评估模块,经过空间门特征增强模块,得到每个阶段的增强特征并输入块级质量聚合模块,得到每个视频块的块级质量分数;采用自适应加权策略计算得到空域感知质量分数;碎片化视频输入时域感知质量评估支路,得到时域感知质量分数,两者结合计算得到屏幕内容视频的质量分数,解决现有视频质量评价方法可靠性差的问题。

    基于高效频域Transformer的轻量级图像超分辨率方法及装置

    公开(公告)号:CN119180752B

    公开(公告)日:2025-02-25

    申请号:CN202411678685.5

    申请日:2024-11-22

    Abstract: 本发明公开了一种基于高效频域Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:构建基于高效频域Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型,图像超分辨率模型包括第一卷积层、亚像素卷积层、第二卷积层以及若干个高效频域Transformer模块;获取待重建的低分配率图像和上采样因子并输入经训练的图像超分辨率模型,先经过第一卷积层,得到第一卷积层的输出特征,第一卷积层的输出特征依次经过若干个高效频域Transformer模块,将最后一个高效频域Transformer模块的输出特征与第一卷积层的输出特征相加,得到第二相加结果,第二相加结果依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像。本发明克服现有Transformer方法计算复杂度过高的问题。

    基于多尺度高斯球的动态场景重建方法及装置

    公开(公告)号:CN119991973A

    公开(公告)日:2025-05-13

    申请号:CN202510480150.5

    申请日:2025-04-17

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多尺度高斯球的动态场景重建方法及装置,涉及计算机视觉领域,包括:采用运动恢复结构算法对待重建的视频帧序列进行处理,生成稀疏点云,对稀疏点云进行初始化,生成3D高斯球集合;采用双域变形模型和自适应时间戳对3D高斯球集合进行处理,得到变形的3D高斯球集合;对变形的3D高斯球集合进行多尺度高斯处理,生成多尺度高斯球集合;对多尺度高斯球集合进行基于像素覆盖率的高斯筛选,得到优化后的多尺度高斯球集合;基于优化后的多尺度高斯球集合进行Alpha混合处理,重建得到抗锯齿动态渲染场景图像。本发明解决了目前动态场景重建的计算开销大且存在混叠效应等问题。

    一种基于宽度网络的集成单分类异常流量检测方法及系统

    公开(公告)号:CN119561791B

    公开(公告)日:2025-04-22

    申请号:CN202510114211.6

    申请日:2025-01-24

    Applicant: 华侨大学

    Abstract: 本发明涉及入侵流量检测领域,公开了一种基于宽度网络的集成单分类异常流量检测方法及系统,方法包括如下步骤:采样步骤,根据采样概率抽取一定比例的正常数据;训练步骤,利用所述正常数据训练宽度自编码网络,作为弱分类器;更新步骤,根据样本重构误差计算当前弱分类器的置信度,并更新样本的采样概率;集成步骤,重复采样步骤至更新步骤,直到获得若干个弱分类器,集成获得异常流量检测模型;检测步骤,利用异常流量检测模型对未知样本进行异常检测,得到多个弱分类器的异常检测结果,根据弱分类的置信度对异常检测结果加权得到最终的检测结果。本发明将宽度学习自编码网络应用在单分类问题,解决了深度网络训练慢、消耗内存大等问题。

    一种基于宽度网络的集成单分类异常流量检测方法及系统

    公开(公告)号:CN119561791A

    公开(公告)日:2025-03-04

    申请号:CN202510114211.6

    申请日:2025-01-24

    Applicant: 华侨大学

    Abstract: 本发明涉及入侵流量检测领域,公开了一种基于宽度网络的集成单分类异常流量检测方法及系统,方法包括如下步骤:采样步骤,根据采样概率抽取一定比例的正常数据;训练步骤,利用所述正常数据训练宽度自编码网络,作为弱分类器;更新步骤,根据样本重构误差计算当前弱分类器的置信度,并更新样本的采样概率;集成步骤,重复采样步骤至更新步骤,直到获得若干个弱分类器,集成获得异常流量检测模型;检测步骤,利用异常流量检测模型对未知样本进行异常检测,得到多个弱分类器的异常检测结果,根据弱分类的置信度对异常检测结果加权得到最终的检测结果。本发明将宽度学习自编码网络应用在单分类问题,解决了深度网络训练慢、消耗内存大等问题。

    一种基于宽度学习的半监督多视图聚类集成方法及系统

    公开(公告)号:CN119479047A

    公开(公告)日:2025-02-18

    申请号:CN202510066012.2

    申请日:2025-01-16

    Abstract: 本发明涉及机器学习领域,公开了一种基于宽度学习的半监督多视图聚类集成方法及系统,方法包括以下步骤:构建一种可以依据多视图人脸图像数据进行特征处理的基于宽度学习的自编码器,用于对输入的人脸图像进行特征提取,并基于宽度学习计算不同节点特征的权重;结合基于宽度学习的自编码器和双向约束传播构建聚类集成模型;利用聚类集成模型实现多视图人脸图像的聚类集成。本发明利用宽度学习系统的性能优势进行多视图数据的聚类处理,得到兼具效率与性能的模型网络,引入了流型结构和成对约束,并且在共识过程中采用了约束传播,丰富样本信息,有效提升基于宽度学习的聚类集成网络模型的鲁棒性和准确性,因而在实际场景中更具适用性。

    基于分类激活映射自举的路面裂痕分割方法及装置

    公开(公告)号:CN119229130A

    公开(公告)日:2024-12-31

    申请号:CN202411736952.X

    申请日:2024-11-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于分类激活映射自举的路面裂痕分割方法及装置,涉及人工智能、机器视觉领域,方法包括:训练基于深度网络的正常与裂痕路面分类模型;利用类激活映射方法生成路面图像的激活映射图,通过高激活阈值筛选出类别高激活掩码并进行增强操作后,加入路面图像训练集;重复上述步骤,直到达到设定条件;基于训练好的正常与裂痕路面分类模型生成待推理的路面图像的激活映射图,通过裂痕掩码阈值获得待推理的路面图像的裂痕掩码,作为裂痕分割结果。本发明利用分类模型与激活映射,寻找类别高激活掩码更新路面图像训练集,不断迭代优化掩码效果,以改善路面裂痕分割效果,无需对裂痕进行像素级的标注,大大降低了标注成本。

Patent Agency Ranking