-
公开(公告)号:CN112130147A
公开(公告)日:2020-12-25
申请号:CN202010900047.9
申请日:2020-08-31
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 一种基于海陆目标位置信息的成像波位确定方法,属于星载合成孔径雷达成像技术,首先,根据星载SAR成像准备时间,设置星上定位系统PVT数据外推时间;其次,基于实时广播的PVT、姿态数据,通过坐标系转换和星地位置计算,获得目标在卫星本体坐标系下的位置矢量;再次,根据目标在卫星本体坐标系下的位置矢量确定目标的成像时刻和最优成像波位。本发明方法充分利用了星上定位系统PVT数据外推功能,输入参数简单且易于卫星自主实现,计算精度相对较高。
-
公开(公告)号:CN108955684B
公开(公告)日:2020-12-18
申请号:CN201810417631.1
申请日:2018-05-04
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明公开了一种基于连续推力的轨道机动自主规划方法和系统,其中,所述方法包括:根据轨道机动前后目标视线角变化与视线距离精度间的对应关系,建立可观测度优化模型;根据约束条件和给定可观测度优化目标时刻,对可观测度优化模型的目标函数进行优化,得到最优推力参数,并解算得到当前相对导航结果;根据当前相对导航结果与原始相对导航结果之间的比较结果,判定所述当前相对导航结果是否满足可观测性优化判定条件;若判定当前相对导航结果满足可观测性优化判定条件,则返回并重新进行轨道机动规划。本发明实现仅测角相对导航系统可观测度的自主增强,满足了空间态势感知与自主交会等任务的应用需要。
-
公开(公告)号:CN109725648B
公开(公告)日:2020-09-18
申请号:CN201811495677.1
申请日:2018-12-07
Applicant: 北京空间飞行器总体设计部
IPC: G05D1/10
Abstract: 一种相对导航卫星伴飞机动窗口计算方法,首先根据主星和伴星的位置和速度参数,计算给定主星点火时刻和轨道转移时间情况下的变轨速度增量和与伴星交会时的相对速度;其次,给定主星点火时刻范围和轨道转移时间范围,以点火时刻为横坐标、轨道转移时间为纵坐标,获取主星加速的速度增量和交会时相对伴星的速度等高线图;最后,根据速度等高线图,得到满足主星变轨速度增量约束的点火时刻和轨道转移时间。此外,根据速度等高线图,还可得到主星变轨速度增量最优和轨道转移时间最优的机动窗口。该发明还可对给定的点火时刻和轨道转移时间,得到主星点火的方向和速度增量需求,以及交会时相对伴星的速度大小和方向。
-
公开(公告)号:CN109085586A
公开(公告)日:2018-12-25
申请号:CN201810860789.6
申请日:2018-08-01
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 本发明公开了一种可提供稳定长短基线的四星Helix编队构型。使用本发明能够在一个轨道周期内提供稳定的垂直有效长基线和垂直有效短基线,从而可利用长短基线组合基线高精度干涉测高。本发明构型包括1颗主星和3颗辅星,主星轨道与各辅星轨道分别为满足Helix构型的双螺旋轨道;本发明构型在编队飞行过程中的任意时刻,主星都可以与其中一颗辅星之间形成最优垂直有效基线,满足最优基线取值范围指标,任意时刻都存在两颗辅星之间形成的有效长基线,从而在整个轨道周期内,任意时刻总是存在一组稳定的有效长基线和短基线,从而可利用长短基线组合基线高精度干涉测高。
-
公开(公告)号:CN108897023A
公开(公告)日:2018-11-27
申请号:CN201810384319.7
申请日:2018-04-26
Applicant: 北京空间飞行器总体设计部
IPC: G01S19/42
Abstract: 本发明提供了一种星上自主的非合作机动目标跟踪保持变轨方法,利用经典的C-W方程作为相对运动模型,将追踪航天器和空间非合作机动目标之间的相对运动关系进行线性化处理,简化计算量,在星上硬件设备能力有限的前提下,实现星上自主计算。同时在跟踪保持变轨策略设计时充分考虑追踪航天器的能力约束,引入追踪航天器推力器的最大点火时间约束、两次点火间的最短时间间隔约束,实现追踪航天器在工程约束下的对空间非合作机动目标跟踪保持变轨策略的设计方法。
-
公开(公告)号:CN108692729A
公开(公告)日:2018-10-23
申请号:CN201810417622.2
申请日:2018-05-04
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明公开了一种空间非合作目标相对导航协方差自适应修正滤波方法和系统,该方法包括:建立空间非合作目标在观测卫星质心轨道坐标系下的非线性相对运动模型与仅测角相对导航观测模型;基于无迹卡尔曼滤波算法,根据所述非线性相对运动模型与仅测角相对导航观测模型,解算得到观测量预测值、观测协方差矩阵和卡尔曼增益矩阵;给定观测窗口宽度,根据窗口内观测量的观测协方差矩阵和卡尔曼增益矩阵,对测量噪声方差矩阵和状态噪声方差矩阵进行修正。本发明满足了空间非合作目标仅测角相对导航的应用需求,具有计算量小、收敛性强的特点。
-
公开(公告)号:CN106559665B
公开(公告)日:2018-02-09
申请号:CN201610917848.X
申请日:2016-10-20
Applicant: 北京空间飞行器总体设计部
Abstract: 一种离轴相机积分时间确定方法,针对传统方法对离轴相机积分时间计算存在偏差的问题,采用运动学理论及立体几何方法,由卫星轨道、姿态、成像点参数计算得到地速矢量,构建地速、像速、视轴矢量三角形,解矢量三角形计算像速的大小及像速矢量,利用相机像元尺寸、焦距、摄影点斜距等参数计算得到精确的离轴相机积分时间。本发明方法简洁高效,准确合理;避免了传统的坐标转换方法可能带来的偏差,通过对相关物理量关系的准确分析,精确的计算离轴相机的积分时间,提高CCD积分时间计算结果的准确性,改善卫星成像质量,在工程应用中精度更高;还可进一步推导出离轴相机偏流角的计算方法;且同样适用于同轴相机,适应性更广。
-
公开(公告)号:CN105547258B
公开(公告)日:2018-02-09
申请号:CN201610052803.0
申请日:2016-01-26
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明一种遥感卫星TDICCD相机积分时间星上优化计算方法,具体步骤为:1)根据相机在卫星上安装位置,计算得到每片CCD从相机坐标系到卫星本体坐标系的转换矩阵,并将该矩阵作为常量Pk存储到星载计算机的内存中;2)根据卫星轨道数据、卫星姿态数据以及相机参数数据计算得到第1组第1片CCD的积分时间;3)利用相邻CCD积分时间计算存在很多相同中间量的特性,将第1组第1片CCD积分时间计算的中间量进行保存。4)利用步骤1)的常量Pk和步骤3)得到的中间计算结果优化计算第1组剩余的M‑1片CCD的积分时间。5)返回步骤2),重复步骤2)到步骤4),计算剩余N‑1组的积分时间值。
-
公开(公告)号:CN104787360B
公开(公告)日:2017-01-04
申请号:CN201510119690.7
申请日:2015-03-18
Applicant: 北京空间飞行器总体设计部
IPC: B64G1/24
Abstract: 一种基于轨迹保持需求的遥感卫星空间碎片规避机动方法,根据遥感卫星在轨运行允许的地面轨迹漂移范围构建标称轨迹保持控制环,并划分为不同区域,对可能发生危险交会需要进行轨道机动规避空间碎片碰撞威胁的航天器,针对不同区域确定不同的机动策略,以达到规避碰撞风险的目的。本发明方法采用轨迹保持控制环作为制定策略的依据,简单高效,易于操作,特别适合空间碎片碰撞规避这种需要很高时效性的操作,能够提高效率,节省时间,为空间碎片碰撞规避赢得宝贵的时间,提高卫星在轨运行的安全性。同时最大限度的降低了规避机动对航天器飞行任务的影响,提升了卫星空间碎片碰撞预警与规避能力。
-
公开(公告)号:CN105547258A
公开(公告)日:2016-05-04
申请号:CN201610052803.0
申请日:2016-01-26
Applicant: 北京空间飞行器总体设计部
CPC classification number: G01C11/025 , G01C25/00
Abstract: 本发明一种遥感卫星TDICCD相机积分时间星上优化计算方法,具体步骤为:1)根据相机在卫星上安装位置,计算得到每片CCD从相机坐标系到卫星本体坐标系的转换矩阵,并将该矩阵作为常量Pk存储到星载计算机的内存中;2)根据卫星轨道数据、卫星姿态数据以及相机参数数据计算得到第1组第1片CCD的积分时间;3)利用相邻CCD积分时间计算存在很多相同中间量的特性,将第1组第1片CCD积分时间计算的中间量进行保存。4)利用步骤1)的常量Pk和步骤3)得到的中间计算结果优化计算第1组剩余的M-1片CCD的积分时间。5)返回步骤2),重复步骤2)到步骤4),计算剩余N-1组的积分时间值。
-
-
-
-
-
-
-
-
-