-
公开(公告)号:CN117081534A
公开(公告)日:2023-11-17
申请号:CN202311115606.5
申请日:2023-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种体声波滤波器封装结构及其制备方法,体声波滤波器封装结构中依次设置第一衬底、第一介质层、滤波器、键合层、射频电路层、第二衬底,键合层设置有贯通槽被滤波器、键合层、射频电路层包围形成一空腔;互连结构贯穿键合层连接滤波器和射频电路层,第二介质层包裹射频电路层,导线引出结构贯穿第二衬底将射频电路层电连接引出至第二衬底表面。本发明通过滤波器与射频电路层分别模块化制备后进行键合的垂直堆叠的集成方法,减小了结构封装面积同时降低了制造成本、提高了制备效率。
-
公开(公告)号:CN115094516B
公开(公告)日:2023-07-07
申请号:CN202210731188.1
申请日:2022-06-24
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种低应力氮化铝压电薄膜的生长方法,所述生长方法至少包括:1)提供硅衬底,图形化刻蚀所述硅衬底;2)进行第一次热处理,所述刻蚀形成的刻蚀孔的上表面逐渐闭合,在所述硅衬底中形成分立的空腔结构;3)进行第二次热处理,分立的所述空腔结构逐渐合并;4)在所述硅衬底表面外延生长第一氮化铝薄膜;5)在所述第一氮化铝薄膜表面外延生长第二氮化铝薄膜。本发明利用表面图形化刻蚀和两次热处理工艺在硅衬底中形成大尺寸空腔结构,空腔结构对氮化铝或者铝钪氮薄膜外延过程中因为晶格失配或者热失配产生的应力进行有效释放,形成高晶体质量、低应力的氮化铝或者铝钪氮薄膜。
-
公开(公告)号:CN116248067A
公开(公告)日:2023-06-09
申请号:CN202310229595.7
申请日:2023-03-10
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提出一种体声波谐振器的调谐方法,体声波谐振器的调谐方法包括:压电薄膜包括n层极性压电薄膜,任意相邻两层的极性压电薄膜的极性相反,其中,n≥2;通过固定压电薄膜的总厚度,改变不同极性的极性压电薄膜的层数。极性压电薄膜层数越多,越能激发更高阶谐振模式,谐振频率越大;体声波谐振器的调谐方法利用分层制备极性相反的极性压电薄膜,在不降低压电薄膜总厚度或引入过渡电极的条件下提高谐振器谐振频率,激发更高阶谐振模式,简化工艺,降低对工艺及设备要求的同时,提高滤波器工作频率。
-
公开(公告)号:CN115347113A
公开(公告)日:2022-11-15
申请号:CN202210975358.0
申请日:2022-08-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L41/33 , H01L41/047 , H01L41/053 , H01L41/09 , H01L41/29
Abstract: 本发明提供一种含有双极性压电结构的PMUT器件及其制备方法,所述制备方法至少包括:1)提供具有空腔的衬底,在所述衬底表面形成底电极层;2)在所述底电极层表面形成压电层,所述压电层包括依次形成于所述底电极层表面的第一极性压电层和第二极性压电层;3)于所述第二极性压电层表面依次沉积钝化层和顶电极层,并图形化所述顶电极层;4)制备所述底电极层和所述顶电极层的电极引出结构。利用本发明的制备方法所获得的PMUT器件中,其压电层为单层双极性膜,具有无过渡区的特点,可以最大化有效工作区域,另外,单层双极性膜的制备工艺简单,开孔数量少,布线面积小,因此,可以使得PMUT的阵列密度大幅提高。
-
公开(公告)号:CN115001427A
公开(公告)日:2022-09-02
申请号:CN202210772041.7
申请日:2022-06-30
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种空气隙型单晶压电薄膜体声波谐振器及其制备方法,所述制备方法至少包括:1)在第一衬底上生长压电薄膜;2)形成第一电极,并图形化第一电极和压电薄膜;3)旋涂第一聚合物层;4)利用光刻工艺图形化所述第一聚合物层,形成第一开口;5)提供第二衬底,其具有第二聚合物层;6)将第一聚合物层和第二聚合物层键合固定,去除第一衬底,所述第一开口形成空腔结构;7)形成介质层,图形化所述介质层形成暴露所述压电薄膜的第二开口;8)形成第二电极,并制作电极引出结构。本发明利用旋涂和光刻技术形成图形化的第一聚合物层,避免了生长沉积、抛光及刻蚀等复杂工艺的引入,工艺简单,成本更低。
-
公开(公告)号:CN105866983B
公开(公告)日:2019-05-07
申请号:CN201610216678.2
申请日:2016-04-08
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G02F1/015 , H01L31/115 , B82Y30/00
Abstract: 本发明提供一种锗银复合材料及其在光电器件中的应用,所述锗银复合材料包括本征锗及埋在所述本征锗中的银纳米颗粒。所述锗银复合材料可以通过离子注入法将银离子注入到本征锗中并退火得到。本发明可以利用银纳米颗粒的局域表面等离子体共振增强作用,以及纳米颗粒之间表面等离子体共振耦合排斥作用,调控共振增强峰位频率在近红外波段,从而增强锗在近红外波段的光电响应。通过控制纳米银颗粒在本征锗中的密度,可以有效的控制增强锗光电响应的频谱范围从可见光到近红外。
-
公开(公告)号:CN104157579B
公开(公告)日:2017-10-03
申请号:CN201410457619.5
申请日:2014-09-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336
Abstract: 本发明提供一种多沟道全包围栅极的半导体器件结构的制备方法,所述制备方法包括步骤:1)提供一硅衬底,于所述硅衬底表面形成Ge底层;2)在所述Ge底层上生长SiGe/Ge周期结构,最上一层用Ge覆盖;3)于所述SiGe/Ge周期结构及Ge底层中刻蚀出直至所述硅衬底的多个间隔排列的凹槽;4)采用选择性腐蚀工艺去除凹槽之间的SiGe/Ge周期结构中的SiGe,形成具有间隔的多层Ge结构;5)于所述多层Ge结构的上表面及多层Ge结构之间及侧壁形成栅介质层。本发明提供了一种工艺简单,成本低廉的多沟道全包围栅极的半导体器件结构的制备方法,所制备的半导体器件结构具有多个沟道,可以进一步提高器件性能。本发明具有结构及工艺简单,集成度高等优点,适用于工业生产。
-
公开(公告)号:CN104425342B
公开(公告)日:2017-08-15
申请号:CN201310382840.4
申请日:2013-08-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762 , H01L21/683
Abstract: 本发明提供一种厚度可控的绝缘体上半导体材料的制备方法,包括步骤:1)于第一衬底表面外延一掺杂的单晶薄膜;2)依次外延一重掺杂单晶层及一顶层半导体材料;3)将剥离离子注入至单晶薄膜下方的第一衬底预设深度的位置;4)提供表面具有绝缘层的第二衬底,并键合绝缘层及顶层半导体材料;5)使重掺杂单晶层与第一衬底从该单晶薄膜处分离;6)采用预设溶液腐蚀以去除重掺杂单晶层,其中,所述预设溶液对重掺杂单晶层的腐蚀速率大于其对顶层半导体材料的腐蚀速率。本发明通过掺杂的超薄单晶薄膜实现剥离,将剥离面控制在非常薄的一个层面内;通过高选择比的腐蚀工艺,可以制作出高质量且厚度可控性高的绝缘体上半导体材料。
-
公开(公告)号:CN105742443A
公开(公告)日:2016-07-06
申请号:CN201610187620.X
申请日:2016-03-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于表面等离子体的硅基光源,所述硅基光源包括基底及形成于所述基底上的Ω阵列微纳结构;所述Ω阵列微纳结构包括至少两个Ω微纳结构单元;其中,所述Ω微纳结构单元包括:发光部;环绕包裹所述发光部部分表面的波导部,且所述波导部未覆盖所述发光部的出光面;环绕包裹所述波导部部分表面的金属层,用以在所述金属层及所述波导部界面上产生表面等离子体;所述金属层底部与所述基底相接触。本发明通过调控材料来调控本征热发光频带,通过集成一系列不同半径R的内层发光材料实现宽频热发光效率增强,并且可以实现光学模式峰位与本征热发光峰位共振使发光效率达到峰值。
-
公开(公告)号:CN104934294A
公开(公告)日:2015-09-23
申请号:CN201410100517.8
申请日:2014-03-18
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02 , H01L21/762 , H01L29/06
CPC classification number: H01L21/7624 , H01L29/06
Abstract: 本发明提供一种绝缘体上应变薄膜结构,包括半导体衬底、形成于所述半导体衬底上的埋氧层及形成于所述埋氧层上的顶层应变半导体层;所述顶层应变半导体层中形成有预设图形微结构;所述微结构包括一主体及分布于所述主体边缘的至少两条桥线;所述微结构下方的埋氧层被挖空,所述微结构处于悬空状态;所述桥线处于拉伸状态。本发明通过图形化在绝缘体上应变半导体层中形成预设图形微结构,并通过腐蚀去除微结构下方的埋氧层,使得微结构悬空,得到了悬浮条件下顶层应变半导体层的应力分布,从而改变顶层半导体层中微结构本身的固有应力,实现应力的调控。通过切断微结构的部分桥线,可以进一步增加应力,制备得到高质量、大应力的纳米应变薄膜。
-
-
-
-
-
-
-
-
-