一种高精度大量程非接触式测量磁致应变的装置及方法

    公开(公告)号:CN106646293B

    公开(公告)日:2019-02-26

    申请号:CN201610895945.3

    申请日:2016-10-14

    Applicant: 东北大学

    Abstract: 一种高精度大量程非接触式测量磁致应变的装置及方法,所述装置包括:电磁铁底座、电磁铁固定支架、第一电磁铁、第二电磁铁、第一支撑杆、第二支撑杆、第一旋钮、第二旋钮、测量固定台、样品台、第一三轴位移台、第二三轴位移台、第一激光位移传感器、第二激光位移传感器、第一连接板、第二连接板和数据处理装置,在测量样品的应变时,将样品固定在样品台上,通过第一激光位移传感器和第二激光位移传感器射出的激光在样品表面产生的反射回路的变化来计算样品发生的应变量,该过程实现了对样品的非接触式测量,无需在样品的表面贴应变片,因此样品不会受到应变片最大变形量的限制,也避免了应变片阻碍样品的变形的问题,提高了测量的精度。

    提高挤压式磁流变液被动隔振器的阻尼力的方法及隔振器

    公开(公告)号:CN107939895A

    公开(公告)日:2018-04-20

    申请号:CN201711115866.7

    申请日:2017-11-13

    Applicant: 东北大学

    Inventor: 赵志伟 李鹤 杨波

    CPC classification number: F16F9/535 F16F9/3405

    Abstract: 本发明公开了提高挤压式磁流变液被动隔振器的阻尼力的方法及隔振器,通过多个含通孔的永磁铁片磁极相异布置形成多个腔室,相邻磁铁片上的通孔错开布置;磁流变液通过通孔流入或流出腔室并挤压悬浮颗粒形成的链状排布,磁场下的上述链状排布在受到挤压时形成对磁流变液的阻滞力,上一级腔室的一部分磁流变液被挤压入下一个腔室,以上各腔室阻滞力总和即为所述挤压式磁流变液被动隔振器的阻尼力。本发明的优点:克服了现有的半主动磁流变阻尼器在工作期间刚度小、对突发供电故障时阻尼急剧丢失、对电能的依赖以及相应工作部件散热能力差等缺陷与不足。

    一种Ni-Co-Mn-In-Ge磁制冷合金材料及制备方法

    公开(公告)号:CN107881394A

    公开(公告)日:2018-04-06

    申请号:CN201711209823.5

    申请日:2017-11-28

    Applicant: 东北大学

    Abstract: 一种Ni-Co-Mn-In-Ge磁制冷合金材料及制备方法,属于磁性制冷材料技术领域。所述Ni-Co-Mn-In-Ge磁制冷合金材料的化学分子式为Ni45Co5Mn36.5In13.5-xGex,合金中元素的摩尔数之和为100,其中1≤x≤4。本发明通过原料配比、真空电弧多次反复熔炼,制备多晶铸锭,在高纯惰性气体保护下退火,然后迅速水冷,从而制备出Ni-Co-Mn-In-Ge磁制冷合金块体坯料。本发明的合金块体在1.5T外加磁场下,通过升温磁化的方式得到绝热温变变化范围为1.34-2.69K。本发明的磁性合金材料能够在室温附近能够获得较大的绝热温变,伴随有巨大的磁热效应,可作为宽温域工作范围的一种磁制冷工质。

    一种Mn‑Ni‑Sn‑Co合金薄带及其制备方法

    公开(公告)号:CN106119661A

    公开(公告)日:2016-11-16

    申请号:CN201610615859.2

    申请日:2016-07-29

    Applicant: 东北大学

    Abstract: 一种Mn‑Ni‑Sn‑Co合金薄带及其制备方法,属于新材料技术领域。Mn‑Ni‑Sn‑Co合金薄带中元素的摩尔数之和为100,元素的摩尔比为Mn:Ni:Sn:Co=(49.5~50.5):(33.5~38.5):(7.5~8.5):(3.5~8.5);制备方法为:(1)真空电弧熔炼多次反复熔炼;(2)甩带法制备厚度为90~120μm合金薄带。本发明合金薄带在升温过程,呈现出磁性转变与结构转变的协同发生,具有磁场诱发马氏体逆相变的特征。本发明合金薄带通过Co添加,提高了铁磁奥氏体的饱和磁化强度,扩大了奥氏体与马氏体之间的磁性差别,显著提高多晶合金薄带的磁热性能,在1T磁场下,磁熵变化为2.4~7.6Jkg‑1K‑1,在1.5T磁场下,磁熵变化为3.5~11.0Jkg‑1K‑1。

    一种输电线路双端行波故障测距的频域方法

    公开(公告)号:CN110927510B

    公开(公告)日:2021-10-01

    申请号:CN201910989942.X

    申请日:2019-10-17

    Applicant: 东北大学

    Abstract: 本发明公开一种输电线路双端行波故障测距的频域方法,包括以下步骤:1)当输电线路发生故障时,位于线路两端的测量元件通过全周波法检测并记录三相故障暂态电流;2)利用Karenbauer变换获得电流线模、地模分量;3)对行波线模、地模分量进行小波包变换,通过小波系数能量最大原则确定自然频率所在频带,计算线模、地模自然频率,并构造测距公式计算故障距离。本发明不需要波速信息,不需要进行数据同步,避免了时域波头这反射不易提取的问题,减少了不确定参数带来的误差影响,大量实验仿真表明,可以有效提高基于行波自然频率的测距精度,从而有效提高了输电线路故障定位精度。

Patent Agency Ranking