一种基于成像高光谱数据的小麦籽粒赤霉病识别方法

    公开(公告)号:CN109657653B

    公开(公告)日:2022-10-04

    申请号:CN201910051447.4

    申请日:2019-01-21

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于成像高光谱数据的小麦籽粒赤霉病识别方法,与现有技术相比解决了尚无快速识别小麦籽粒赤霉病方法的缺陷。本发明包括以下步骤:高光谱基础图像的采集;高光谱基础图像的预处理;构建小麦籽粒赤霉病识别模型;小麦籽粒赤霉病识别模型的训练;待识别高光谱图像的获取;待识别高光谱图像的预处理;小麦籽粒赤霉病的识别。本发明利用室内高光谱成像数据,通过图像分割技术,在高光谱图像中分割小麦籽粒,继而对小麦籽粒的光谱信息进行对比分析,通过数据噪声去除并进行特征波长筛选,建立了小麦赤霉病病害侵染麦粒的有效识别模型,形成了小麦籽粒赤霉病检测的快速有效方法。

    一种基于自定义旋转框的麦穗检测方法

    公开(公告)号:CN114596429A

    公开(公告)日:2022-06-07

    申请号:CN202210201369.3

    申请日:2022-02-28

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于自定义旋转框的麦穗检测方法,包括如下步骤:步骤S100,拍摄观测区群体麦穗图像;步骤S200,改进YoloV5目标检测网络的检测框定义方式和损失函数,获得基于自定义旋转框的YoloV5目标检测网络模型;步骤S300,对改进后的基于自定义旋转框的YoloV5目标检测网络模型进行训练;步骤S400,利用训练好的基于自定义旋转框的YoloV5目标检测网络模型对观测区群体麦穗图像进行检测,并获得利用旋转框框出的麦穗检测结果图像。本方法有效提高了小麦麦穗检测精度,且能够在任何复杂条件下使用,无需任何辅助设备(材料),拥有良好的泛用性。此外,有效解决了照片中因拍摄角度导致的检测框背景较多的情况,目标检测网络模型的角度检测精度也得到了提高。

    一种基于ASD高光谱数据的冬小麦白粉病遥感监测方法

    公开(公告)号:CN108830249B

    公开(公告)日:2021-12-03

    申请号:CN201810665243.5

    申请日:2018-06-26

    Applicant: 安徽大学

    Abstract: 本发明涉及基于ASD高光谱数据的冬小麦白粉病遥感监测方法,包括以下步骤:采集冬小麦的冠层高光谱数据,计算病情指数DI;选取400~800nm波段范围内的冠层高光谱数据作为试验数据;分别计算各波段对于病情指数DI的权重值a和各波段之间的相关系数,求得将权重值和权重值a最大值所对应的波段与其它波段的相关系数归一化后二者间距d,取权重值a最大值所对应的波段和距离d中的最大正值所对应的波段作为最佳敏感波段组合;构造新植被指数NDVI1;选取10种与白粉病病情相关的植被指数与新植被指数NDVI1构建冬小麦白粉病监测模型。本发明通过对小麦高光谱数据中的原始波段信息进行分析、组合和加强,提取敏感波段和构建新的植被指数,并用于病虫害遥感监测。

    小麦赤霉病病害等级分级方法及装置

    公开(公告)号:CN109544538B

    公开(公告)日:2021-09-24

    申请号:CN201811422679.8

    申请日:2018-11-27

    Applicant: 安徽大学

    Abstract: 本发明特别涉及一种小麦赤霉病病害等级分级方法,包括以下步骤:(A)采集得到原始图像;(B)对原始图像依次进行灰度化处理、二值化处理、开闭运算得到二值化图像;(C)将原始图像和二值化图像进行结合;(D)转换到Lab颜色空间,利用IABC‑K‑PCNN方法对a通道灰度图进行处理得到二值化的单穗赤霉病病斑图;(E)计算单穗面积S1和病斑面积S2,然后计算两者比值R;(F)根据国家标准、比值R将对该单穗的病害进行分级并将病害等级输出;还公开了一种分级装置。本发明提出的病害等级分级方法经大量样本测试,在小麦赤霉病田间调查时不破坏性采样,具有分级精度可靠、推广价值高等优势。

    一种基于麦穗尺度分析的冬小麦赤霉病高光谱遥感监测方法

    公开(公告)号:CN110132860B

    公开(公告)日:2021-09-14

    申请号:CN201910454573.4

    申请日:2019-05-29

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于麦穗尺度分析的冬小麦赤霉病高光谱遥感监测方法,与现有技术相比解决了赤霉病的遥感监测未针对麦穗尺度分析的缺陷。本发明包括以下步骤:高光谱遥感数据的获取;数据预处理;构建小麦赤霉病指数;多元逐步回归模型的建立;遥感监测结果的获得。本发明利用敏感波段内一阶微分总和的归一化比值构建赤霉病指数后,建立其与病情严重度的一元线性回归和多元逐步回归模型,实现了小麦赤霉病的有效监测,为染病小麦赤霉病在冠层尺度以及田块尺度上的无损诊断提供思路和依据。

    一种基于成像高光谱数据的小麦白粉病严重程度检测模型的建模方法及应用

    公开(公告)号:CN111751295A

    公开(公告)日:2020-10-09

    申请号:CN202010633251.9

    申请日:2020-07-02

    Applicant: 安徽大学

    Abstract: 本发明提供了一种基于成像高光谱数据的小麦白粉病严重程度检测模型的建模方法及应用。通过高光谱成像仪扫描获取侵染白粉病小麦叶片382.9~1059.1nm波长范围内1024个波段的高光谱影像;计算小麦叶片白粉病病情指数,依据病情指数对小麦侵染程度进行分级,获取小麦叶片的等级标签;以高光谱影像的光谱数据作为原始波段,利用主成分分析算法、随机森林和连续投影算法分别从1024个波段中挑选出对白粉病敏感的特征波段的光谱信息,用支持向量机、随机森林、概率神经网络三种建模方法将等级标签和每个样本特征波长光谱信息一一对应,训练对应关系,得到预估模型。本发明的预估模型精度达到93.33%。

    双量子点荧光二维探针马拉硫磷与乙硫磷识别定量检测方法及装置

    公开(公告)号:CN108254341B

    公开(公告)日:2020-08-11

    申请号:CN201711478794.2

    申请日:2017-12-29

    Applicant: 安徽大学

    Abstract: 本发明特别涉及一种双量子点荧光二维探针马拉硫磷与乙硫磷识别定量检测方法及装置,该方法包括如下步骤:(A)开启激发光源,激发光源均匀射向第一比色皿和第二比色皿;(B)向第一、二比色皿中分别加入两种量子点溶液后用光谱仪采集两个比色皿的荧光光谱并分析得到荧光峰值和峰位;(C)加入被测溶液后再分析得到荧光峰值和峰位;(D)计算峰值比率和发射峰红移值:(E)将所得值与二维探针标准曲线进行比较得到有机磷农药种类和浓度信息。这里通过引入峰值比率和发射峰红移值两维变量实现对农药种类和浓度的识别,识别的结果准确度和精确度都非常的高;同时,处理过程相对简单,大幅提高了检测的速度。

Patent Agency Ranking